
LIMITED WARRANTY
Radio Shack warrants for a period of 90 days from the date of delivery to

customer that the computer hardware described herein shall be free from defects

in material and workmanship under normal use and service. This warranty shall be

void if the computer case or cabinet is opened or if the unit is altered or modified.

During tills period, if a defect should occur, the product must be returned to a

Radio Shack store or dealer for repair. Customer's sole and exclusive remedy in

the event of defect is expressly limited to the correction of the defect by adjust-

ment, repair or replacement at Radio Shack's election and sole expense, except

there shall be no obligation to replace or repair items which by their nature are

expendable. No representation or other affirmation of fact, including but not

limited to statements regarding capacity, suitability for use, or performance of the

equipment, shall be or be deemed to be a warranty or representation by Radio
Shack, for any purpose, nor give rise to any liability or obligation of Radio Shack
whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, THERE ARE
NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING. BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE? AND IN NO EVENT SHALL
RADIO SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDI-

RECT, SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARIS-
ING OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

LUPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
"AS IS" BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other

person or entity with respect to any liability, loss or damage caused or alleged to

be caused directly or indirectly by computer equipment or programs sold by
Radio Shack, including but not limited to any interruption of service, loss of

business or anticipatory profits or consequential damages resulting from the use

or operation of such computer or computer programs.

NOTE: Good data processing procedure dictates that the user test the program,

run and test sample sets of data, and run the system in parallel with the

system previously in use for a period of time adequate to insure that

results of operation of the computer or program are satisfactory.

mk

CCopyright 1978, by Radio Shack, A Division of Tandy Corporation, Ft. Worth, Texas 76102

This Reference Manual and You
We've prepared this Reference Manual with the assumption
that you — the user - already have considerable experience

with programming in BASIC. Our LEVEL I User's Manual
was written for the total beginner - and has been greeted

with wide acclaim. We freely admit this Manual
has not been written from the same perspective.

But by the time you recognize a desire (or need) for a
LEVEL II BASIC, we expect that you've gone through our
LEVEL I Manual and have a solid foundation in

programming.

If this is your first experience with programming
micro-computers, we very strongly urge you to spend time

with a LEVEL I TRS-80 first - and the Manual we
prepared for it.

If you've had experience with other forms of the BASIC
language (other micro-computers or time share systems) then

you should be ready for our Reference Manual for

LEVEL II.

LEVEL II is a far more powerful version of BASIC than was
LEVEL I. If you have been working with LEVEL I for

some time, be prepared for some pleasant surprises — and
some differences that might throw you for awhile (for

example, LEVEL I programs won't run as-is on a LEVEL II

machine . . . you'll have to modify them). This Manual is a

complete reference guide — it is not intended to be a

complete step-by-step training manual or an applications

book (that will come later).

. If you have some suggestions . . . criticisms . . . additions . .

.

concerning this Manual — we'd be glad to hear from you.

FIRST EDITION - 1978

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial con-

tent, in any manner, is prohibited. No patent

liability is assumed with respect to the use of the

information contained herein. While every pre-

caution ha* been taken in the preparation of this

book, the publisher assumes no responsibility

for errors or omissions. Neither is any liability

assumed for damages resulting from the use of the

information contained herein.

O Copyright I97S. Radio Shack,

A Division of Tandy Corporation,
Fort Worth, Ttxat 76102. U.S.A.

Printed in the United States of America

CONTENTS
Setting Up the System i-iii

Tips on Loading Cassette Programs iv

1/GeneraI Information 1/1-3

2/Commands 2/1-6

3/Input-Output Statements 3/1-11

4/Program Statements 4/1- 17

5/Strings 5/1-9

6/Arrays 6/1-6

7/Arithmetic Functions 7/1-4

8/Special Features 8/1-12

9/Editing 9/1-6

10/Expansion Interface 10/1-4

11/Saving Time and Space 11/1-2

Appendices

A/LEVEL II Summary A/1-16

B/Error Codes B/l-3

C/Conrrol, ASCII and Graphics Codes C/l-2

D/LEVEL II TRS-80 Memory Map D/l-2

E/Video Display Worksheet E/l

F/Derived Functions F/l

G/Base Conversion Table G/l

H/User Programs H/l-7

Setting Up The System
Carefully unpack the system. Remove all packing material. Be sure

you locate all cables, papers, tapes, etc. Save the packing material in

case you need to transport the system.

Connecting the Video Display and Keyboard;

1. Connect the power cord from the Video Display to a source of

1 20 volts, 60 Hz AC power. Note that one prong of the AC
plug is wider than the other - the wide prong should go into the

widest slot of the AC socket.

NOTE: If you use an AC extension cord, you may not be able

to plug the Display's power cord in. Do not attempt to

force this wide prong into the extension cord; use a

wall outlet if at all possible.

2. Connect the power cord of the Power Supply to a source of 1 20

volts, 60 Hz AC power.

3. Connect the gray cable from the front of the Video Monitor to

the VIDEO jack on the back of the Keyboard Assembly. Take

care to line up the pins correctly (the plug fits only one way).

NOTE: Before the next step, be sure the POWER switch on the

back of the Keyboard is off (button out).

4. Connect the gray cable from the Power Supply to the POWER
jack on the back of the Keyboard Assembly. Again, take care to

mate the connection correctly.

Connecting The Cassette Recorder:

NOTE: You do not need to connect the Cassette Recorder unless

you plan to record programs or to load taped programs into the

TRS-80.
1. Connect the CTR-41 to a source of 120 volt AC power. (Batteries

are not recommended for using Recorder with TRS-80.)

2. Connect the short cable (DIN plug on one end and 3 plugs on the

other) to the TAPE jack on the back of the Keyboard Assembly.

Be sure you get the plug to mate correctly.

3. The 3 plugs on the other end of this cable are for connecting to

the CTR-41.

A. Connect t lie black plug into the HAR jack on the <:J t- of the

CTR-U. This connection provides :he output s;gr..il :"r.;:n

the CTR-if tolhe TRS-SO (for loading Tape programlinto
theTRS-SO).

B. Connect the larger gray plug into the AL'X jack on the

CTR-41. This connection provides the recording signal to

record programs from the TRS-SO onto the CTR-il's tape.

Also, plug the Dummy Plug (provided with the CTR41J
into the MIC jack (tins disconnects the built-in Mic so it

won't pick up sounds while you Lire loading tapes).

NOTE: Be sure you always use the Dummy Plug when saving

programs on tape (Recording).

"—J Dummy Plug

Connect the smaller gray plug into the REM jack on the

CTR-4 1 . This allows the TRS-SO to automatically control

the CTR-41 's motor (turn tape motion on and off for

recording and playing tapes).

Notes On Using The Recorder

There are a number of things you should be aware of as you use the

Cassette Tape System:

1. To play a tape (load a taped program into the TRS-80), you must
have the CTR-41's Volume control set to middle to upper levels,

(approximately 4 to 6). Then press the CTR-4 1's PLAY key and
then type cloao on the TRS-SO and EUJ£] this command.
This will start the tape motion. An * will appear on the top line

of the Monitor; a second * will blink, indicating the program is

loading. When loading is done, the TRS-SO will automatically

turn the CTR-41 off and flash ready on the screen. You are

then ready to RUN the program (type in RUN and hit UJH^fl).

2. To record a program from the TRS-30, press theCTR-4!'s
RECORD and PLAY keys simultaneously. Then t\ pe csave
followed by a one-letter "file-name" in quotes and EH33
this command. When the pros-ram has been recorded the TRS-80
will automatically turn the CTR-41 off and display ready on
the screen. Now you have your program on tape (it still is in the

TRS-80 also). Many computer users nuke a second or even a

third recording of the tape, just to be sure they have a good
recording.

3. Use the CTR-41's Tape Counter to aid you in locating programs
on tapes.

4. For best results, use Radio Shack's special 10 minute per side

Computer Tape Cassettes (especially designed for recording ;cm-
puter programs). If you use standard audio t..pe cassettes, he

sure to use top quality, such as Realistic 5UPERTAPF. Keep in

mind that audio cassettes have lead-ins on both ends (blue nun-

magnetic mylar material) - you can not record on the leader

portion of the tape. Advance the tape past the leader before

recording a program.

5. When you are not going to use a CTR-J-1 for loading or recording

programs, do not leave RECORD or PLAY keys down {press

STOP).

6. To REWIND or FAST-Forward a cassette, place Recorder in

REWIND or FAST-Foruard. Hun type CLOAD and hit ES333
When tape has reached the desired position, push the Reset

button inside the Expansion Port access door (rear left of

TRS-80). (Instead of using this CLOAD/Reset sequence, you
could remove Ihe REMote plug from its jack: however, repeated

insert ion./removal tends to wear out any plug and is not

recommended.)

7. If you want to save a taped program permanently, break off the

erase protect tab on the cassette (see CTR-41 Manual).

8. Do not expose recorded tapes to magnetic fields. Avoid placing"

your tapes near the Power Supply.

9. To check if a tape has a program recorded on it, you can

disconnect the plug from the EAR jack (also disconnect the

REM plug so you can control the CTR-41 with the keys) and

Play the tape; you'll hear the program material from the speaker.

10. For the best results when using a Recorder with the Computer, you
should keep the Recorder's heads and tape handling mechanism
very clean. A new Recorder should be cleaned before it is used

the first time, and cleaned again after every four hours* use. In

addition, the tape heads should be demagnetized periodically.

A complete line of recorder accessories (cleaning solution, cotton-

tipped swabs, demagnetizer-cassettes, etc.) is available at your local

Radio Shack store.

Special Note:

Before attempting to load a program from tape into the Computer,
be sure the cassette is rewound to a blank portion of the tape pre-

ceding the program. If you try to start the load in the middle of a

preceding program, you probably will get the Computer ' l

hung up"

(in which case you'll have to press Reset and start over).

The same rule applies when you're using the CLOAD? command to

compare a taped program with one stored in the Computer.

Tips On Loading
Cassette Programs
There are many factors which will affect the performance of a cassette

system. The most significant one is volume. Too low a volume may
cause some of the information to be missed. Too high a volume may
cause distortion and result in the transfer of background noise as

valid information. Both of these situations will cause errors.

The recommended volume settings* for loading from cassette tape are:

PRE-RECORDED
USER GENERATED RADIO SHACK

LEVEL II 4-6 5 1/2-61/2
LEVEL I 7-8 7 1/2-8 1/2

If the asterisks do not appear during a load, try lowering the volume.
It is also a good idea to unplug the EARphone (black) plug and listen

for the start of the program. This will tell you exactly where the

program starts. If the asterisks appear, but one is not flashing, try

increasing the volume setting. If higher volume setting doesn't solve

the problem, clean the head.

Handling Load-Errors

There is a very rare case in which only a minor error may occur in

loading a program and no error message will be printed. The best way
to check for this, is to List the program. If the program looks OK,
use the CLOAD? command to compare the tape version with the one
you loaded. If they are not exactly the same, a "BAD" message will

be printed. Such a case normally can be remedied with a minor
adjustment in the volume setting (usually a slight increase).

•Numbers refer to markings on the Radio Shack CTR-41 Recorder,

which run from to 10 (full volume). For different models of
Recorders, numbers recommended may not be appropriate. Do a

little experimenting.

1 / General Information

This chapter will provide you with an overview of
LEVEL II BASIC - what some of its special features

are, how it differs from LEVEL I, and generally,

what you need to get going. In addition, there's a

short glossary at the end of the chapter.

Power-Up
Connect Keyboard-Computer, Video Display and Power Supply as

explained in the previous section. Plug Video Display and Power
Supply into 1 20-volt AC outlets. Press POWER buttons on Video
Display and at the back of the Keyboard. Give the video tube a few
seconds to warm up.

memory size? - will appear on the screen. This it your chance

to protect a segment of memory so that machine-language programs
may be loaded, using a special command, SYSTEM. For normal
applications, you won't want to protect any memory, so just press

the U;H4;I key without typing in any numbers. This will allow

you to write BASIC programs using the full memory capacity of
your Computer (for 4K LEVEL II machines, that's 3284 bytes; for

16K LEVEL II machines, it's 15,572 bytes).

NOTE: In general, whenever you have typed something in via the

keyboard and you want the Computer to "act" on your input, you
must first hit the M.'M3:j key just as you did with the Level I

TRS-80. There are ways to have the Computer respond as soon is

you hit a key (without HfHU), but these will be covered later.

RADIO SHACK LEVEL II BASIC
READY

will appear on the screen. You arc now ready to use LEVEL II

BASIC.

Operating Modes

There are four operating modes: Command, Execute, Edit and
Monitor. Command and Execute Modes are just like LEVEL I

BASIC. In the Command Mode, the Computer responds to

Lomiiund* ji mj.hi ji iluy jrc i-nli-rcd. This i% ihc k-vcl you use to

write programs and perform computations directly ("calculator

mode" of LEVEL I). Whenever the >_ appears on the Display,

you're in the Command Mode.

i/i

The Execute_Mode is usually entered by typing_RUN; this causes

BASIC programs to be executed. Unlike LEVEL [, LEVEL II

initializes all numeric variables to zero and set? all strings to null

when you enter the command run.

The Edit Mode is a real time-saving feature of LEVEL II.

It allows you to edit (alter, add to or delete) the contents of
program lines. Instead of retyping an entire program line, you
change just the part that needs changing.

NOTE: Whenever Computer encounters a Syntax error during

execution, it will go into Edit Mode for that line. To get out of Edit

Mode, type "Q" (without quotes).

The Monitor Mode lets you load machine language "object files"

into memory. These routines or data can then be accessed by your
BASIC programs, or they may be completely independent programs.

Special Function Keys

LEVEL II BASIC offers the same special function keys as LEVEL I -
plus a few extras. The function of the key depends on what mode the

Computer is in.

Command Mode:

rjm33 Effects a carriage return; Computer "looks at" line

just typed in and acts accordingly. If line just typed in

has no line number. Computer will interpret and

execute the statements contained in the line. If Line

has a line number, Computer stores the line in program
memory.

Backspaces the cursor and deletes last character typed
-* in.

SHIFT -* Deletes the line you are typing in, and returns cursor

to beginning of logical line.

Linefeed; moves cursor down to next physical line on
the Display.

• Separates BASIC statements contained on the same
logical line, to allow multi-statement lines.

E.g., PRINT "FIRST STATEMENT":PRtNT "SECOND STATEMENT"
*- Moves cursor over to the next tab stop. Tab stops are

at positions 0,8, 16, 24, 32, 40, 48 and 56.

shift * Converts display to 32 character-per-line format.

clear Clears the Display and returns it to 64 character-per-

line format.

172

t

Execute Mode:

shift ® I ause; stops program execution. Hitting any key
causes execution to be resumed. Hitting shift » also

freezes the Display duruiga LIST so vou can examine
program lines.

BREAK Stops execution. Resume execution by typing CONT.

HSB3 y<k'.'r, Computer is awaiting input from the keyboard,

l
3
,)'i i^;J causes Computer to "look at" what you've

For Edit Mode special function keys, see Chapter 9.

Variable Names

Variable names must begin with a letter (A-Z) and may be followed

by another letter or digit (0-9). So the following arc all valid and

distinct variable names:

a a: AA AZ G9 GP M ML' ZZ Zl
Variable name; may be longer than two characters, but only the first

two characters will be used by the computer to distinguish between
variables. For example "SUM". "SUB" and "SU" will be treated as

one and the same variable by LEVEL II BASIC.

As you can imagine, this gives you plenty of variable names to use in

LEVEL II lin the neighborhood of ''00). However, you cannot use

variable names which contain words with special meaning in the

BASIC language. For example. "NOV ear-not be used as a variable

name, since it contains the BASIC keyword "ON". The complete
list of "reserved wards'" which cannot be used in variable names
appears in Appendix A of this Manual.

Variable Types
There are four type; of vjriables in LEVEL II: integer, single pre-

cision, double precision, and strip-: variables. The firs' three types

are used to store numerical values with various degrees of precision;

the last type stores strings (sequence;) of characters - letters, blanks,

numbers and special symbols - up to 155 characters lone. LEVEL I

only allowed two string .iriables. AS and BS - hut LEVEL 11

allows you to use any vj.-ia'-Ie name tor strings, simply by adding the

string declaration character, S, to the variable name. There are

declaration characters for the other variable types, too: Here's a

complete listing:

i/i

numbers %:ejier

than -32769 and
lew than +32768

double precision # A».ZZ*,C# 300.1 2'4SS?3.
(16 lijniikani 1.141 JJ:S53ii9
fipites) I-uOOOjOOOjOGOXH

double precision D "A *=1.2345673901[>+1 2" 1.2WJ67S901 x 10
11

with scientific no-

tation (for enieruii

Doananu or during

output of Large or

small numbers)

string (up to I AII.GTI.HIJ "JOHN CJ. DOK",

The same variable name may be used for different variable types,

and the Computer will still keep them distinct, because of the type

declaration character: For example, AS, A'l, A!, A« are distinct

variable names.

Variables without declaration characters are assumed to be single-

precision; this assumption can be changed with DEFine statements

(Chapter 4).

Arrays

Any valid variable name can be used to name an array in LF.VF.L 11

BASIC; and arrays are not limited to one dimension- The DIMension
statement is used to define arrays at the beginning of a program.
Depending on the variable type used, an array may contain strings,

integers, double precision values, etc. A whole chapter of this Manual
is devoted to arrays:

Examples: AS (X.Y.Z) would be a three-dimensional array

containing string values

Ci I i.J) would be a two-dimensional array containing

numerical sinyls-precision values

G»(I) would be a one dimensional array of double
precision values.

Arithmetic Operators

LEVEL II uses the same arithmetic operators ;is LEVEL 1:

+ (addition), - (subtraction), * (multiplication) and / (division).

And there's a new, very handy operator: * (exponentiation:

2*3=8).
For example, to compute 6*2' ,J

. print 6-2 (i/a|

NOTE: Some TRS-HO's generate a [character instead of the

i arrow.ma — >
..

;
__ - -

1/4

S2S22 qsazzs

Relational Operators

These are the same as LEVEL L
< (leu than) > (greater than) c(equal to)

<>(not equal to) <»(tei than or equal to) >»(greiter than or equal to)

These operators are useful both for IF . . . THEN statements and for

logical arithmetic.

Example: too if coo then c-jz7

Logical Operators

In LEVEL I BASIC, * and + were used to represent the logical

operators AND and OR. In LEVEL II, we don't use symbols, we
use AND and OR directly. We also have another operator, NOT.
Examples:

SO IF Q - 13 AND R2 - O THKN PRINT "READY"

100 Q " (GKO) AND (G2<L)

ZOO Q (GKO) OR (G2<1_)

300 Q - NOT(C>3)

Q — 1 if both expressions are

True; otherwise Q*»0

Q — 1 if either expression is

True; otherwise Q =

Q — I if the expression is False;

Q if it is True

400 IF NOT |P AND Q) THEN PRINT "P AND O ARE NOT BOTH EQUAL TO—1"

500 IF NOT [POR Q) THEN PRINT "NEITHER P NOR Q EQUALS— I"

String Operators

Strings may be compared and concatenated ("strung together**) in

LEVEL II. A whole chapter of this Manual is devoted to string

manipulations.

Symbol Meaning Example

< precedes alphabetically "A" < "B"

> follows alphabetically "JOE" > "JIM"

= equals 85 = "WIN"

<> does not equal IF ASOBSTHEN PRINT AS
<* precedes or equals IF AS<=AZ$ PRINT "DONE"
>= follows or equals IF L1S>="SMITH" PRINT LIS

+ concatenate the two AS = CS+C1S
strings AS ="TRS-" + "80"

1/5

Order of Operations

Operation* i:i :;-._ ::;:..-: mo-,: ie'.el of p irer.theies .ire pe::V ;:•-•.;,! :.:!.

then evaluation prc.fjJs to the -ex*, ie-.e! out, etc. Op.-rat.on-. o.i the

same nesting level are performed according to the following hierarchy:

Exponentiation: A * B

Negation: -X

\/ (left to right)

+, - (left to right)

«,>,".<•.» , <> (left to right]

. NOT

AND

OR

Intrinsic Functions

Most of the subroutines in the LEVEL I manual are built-in to

LEVEL II. They are faster, more accurate, and much easier to v^e.

Graphics
Level El has the ,ame SET. RESET and POINT f.mct:ons js LEVEL
I for turning graphics blocks on and off and determining whether an

individual block is on or off. (There are a few differences - see

Chapter S.)

A big feature of LEVEL 11 is the .electable display - either 64
characters per line or 3 2 characters per line '.;'!). When the machine
is turned on it is in the iA c 1 mode; hit SUIT I" .md •- .irnml.meo..-!;.'

to change to 32 c I. Pi>pl. : y v.iil return to t-,4 ci whenever a CLS or

NEW is executed or CLEAR key is bit. You can aho shift to 32 c'l

by executing a print CHR5 (23). More on '.hi., in Chapter 5.

Error Messages
LEVEL 1 point:.} out errors by p. ir. ':".'; HO'.v. what? or SOPR Y
aloni; will! the oi:emlmi> -ro-iram !mc with auuc .tion mark in cried

at the point .:!" error. I . V|-[[I :,: ;,;.-. m ..'.;
: re .;-.:;.

information .:-o .; 'Ah.it :> p.- .,;.:, : :,..;.-:.:. . .;$% 2 set of Error

Codes (see Appendix), ."he wi;cmh:u pr-.gr.rn; !mc ;>a!sO pointed

out, but it's up to you to loc.it „' ice error m the h:.e.

i.h

re vissz z: :z=zs z : .= s
"
" i z : -'- zsczsjgaasng^gaa

Abbreviations

Very few abbreviations are allowed in LEVEL II. Ex-LEVEL I users

will have to forget about H., L-, P., etc. Although LEVEL II

doesn't allow these short-forms, it stores the programs more
efficiently than LEVEL I did, so you can still pack a lot of program
into a small amount of memory space.

The abbreviations are:

? for PRINT, and

for :REM

for last line entered, listed, edited, or in which an error occurred.

Keyboard Rollover

With the LEVEL I TRS-80 (and many other computers) you have

to release one key before the Computer will allow entry of another

key. LEVEL II lets you hit the second key before you have

released the first key. This is great for you touch typists.

BHLBL-JJ.J Ji:j;m-MW«WI««

"- - "'
.

"'" '

' — !
' V.T'H';M».: ...^M

Glossary for LEVEL II BASIC
address a value specifying the location of a byte in memory;

decimal values are used in LEVEL II

alphanumeric! the set of letters A-Z, the numerals 0-9, and various

punctuation marks and special characters

argument the value which is supplied to a function and then
operated on to derive a result

array an arrangement of elements in one or more dimensions
ASCII American Standard Code for Information Interchange; in

LEVEL II BASIC, decimal values are used to specify ASCII codes
assembler a program that converts a symbolic-language program into

a machine-language program
BASIC Beginners All-purpose Symbolic Instruction Code
baud signaling speed in bits per second; LEVEL H's cassette interface

operates at 500 baud (500 bits per second)

binary number a number represented in the base-two number system
using only binary digits "0" and'M"

bit binary-digit, the smallest memory cell in a computer
byte the smallest memory unit that can be addressed in BASIC,

consisting of 8 consecutive bits

decimal number a number represented in the base-ten number system
using the digits 0-9

expression a combination of one or more operations, constants and
variables

file an organized collection of related data

hexadecimal number a number represented in the base-16 number
system using the digits 0-9 plus A, B, C, D, E, F

intrinsic function a function (usually a complicated function) that

may be "built-in" to the Computer's ROM and may be used
directly in a BASIC statement

logical expression an expression which is either True or False:

if True, — 1 is returned ; if False, is returned
machine language the language used directly by the Computer,

written as binary-coded instructions
port one of 256 channels through which data can be input to or

output from the Computer
RAM Random Access Memory; memory available to the user for

writing programs and storing data
ROM Read Only Memory; memory which is permanently pro-

grammed and may be read but not written into; LEVEL II BASIC
is stored in ROM

routine a sequence of instructions to carry out a certain function
statement a complete instruction in BASIC
string a sequence of alphanumeric characters ranging in length from

zero (the "null" string) to 255
subroutine a sequence of instructions for performing a desired

function; may be accessed many times from various points in a

program
variable a quantity that can take on any of a given set of values

variable name the label by which a given variable is addressed

1/8

2/Commands
Whenever a prompt > is displayed, your Computer
is in the Command Mode. You can type in a command,
1 A i M -i

;

J

it. jnd the Computer will respond immediately.

This chapter describes the commands you'll u->e to

control tl-.-- Computer - to change modes, begin input

and output procedures, alter program memory, etc.

All of these commands — except CONT — may also be

used inside your program as statements. In some cases

this is useful: other times it is just for very specialized

applications.

The comman ds described in this chapter are:

ALTO CONT EDIT SYSTEM
CLEAR CS-WE LIST TROPF
CLOAD DELETE NEW TRON
CLOAD? RUN

AUTO line number, increment

Turns on an automatic line numbering function for convenient entry

of programs - all ycu have to do is enter the actual proaram
statements. You can specify a beginning line number and an increment

to be used between line numbers. Or you can simply type AUTO and

hit 1

1

1 i i A \

\

, in which case line numbering will begin at 10 jnd use

increments of 10. Each time you hit HSHJ] ' [^e Computer will

advance to the next line number.

Examples:

AUTO
AUTO 5.5

AUTO 100
AUTO 100.25

to use line numbers

10, 20, JO, . . .

5, 10, 15

100, 110, 120

100. 125, 150. . ..

To turn off the ALTO function, hit the BREAK key. (Note: When
ALTO brings up a line number which is already being used, an asterisk

will appear b,'<ide the line number. If you do not wish to re-program

the line, hit the BRiiAK key to turn off ALTO function.)

2/1

CLEAR n

When used without an argument (e.g., type CLEAR and hit SZHU).

this command resets all numeric variables to zero, and all siring

variables to null. When used with an argument (e.g.. CLEAR 100),
this command performs a second function in addition to the one
just described: it makes the specified number of bytes available

for string storage.

Exampler CLEAR 100 makes 100 bytes available for strings. When
you turn on the Computer a CLEAR 50 is executed automatically.

CLOAD "file name"
Lets you load a BASIC program stored on cassette. Place

recorder/player in Play mode (be sure the proper connections are

made and cassette tape has been re-wound to proper position).

NOTE: In LEVEL II. CLOAD and CSA VE operate at a transfer

rate of 500 baud. This is twice as fast as LEVEL I's cassette transfer

rate. Therefore the Volume setting used during CLOAD should be
correspondingly lower. For example, if you're using Radio Shack's
CTR-41 Cassette Recorder, try a setting of between 4 and 6 on the
Volume control when loading programs or data you placed on the

tape. For loading pre-recorded programs, a higher Volume level may
be required. Do a little experimenting.

Entering CLOAD will turn on the cassette machine and load the
first program encountered. LEVEL II also lets you specify a desired
"file" in your CLOAD command. For example, CLOAD '"A" will

cause the Computer to ignore programs on the cassette until

it comes to one labeled "A". So no matter where file "A" is

located on the tape, you can start at the beginning of the tape:

file "A" will be picked out of all the files on the tape and loaded.
As the Computer is searching for Tile "A", the names of the files

encountered will appear in the upper right corner of the Display,
along with a blinking *'•".

Only the first character of t!ie file name is used by the Computer for
CLOAD, CLOAD?, and CSAVE operations.

Loading a program from tape automatically clears out the
previously stored program. See also CSAVE.

CLOAD? "file name"
Lets you compare a program stored on cassette with one presently
in the Computer. This is useful when you have dumped a program
onto tape (using CSAVE) and you wish to check that the transfer
was successful. If you labeled the file when you CSAVEd it, you
may specify CLOAD? "file-name". Otherwise, if you don't specify
a file-name, the first program encountered will be tested. During
CLOAD?, the program on tape and the program in memory are

2/2

123

compared byte for byte. If there are any discrepancies (indicating

a bad dump), the message "BAD" will be displayed. In this case,

you should CSAVE the program again. (CLOAD?, unlike CLOAD,
does not erase the program memory.)

CONT
When program execution has been stopped (by the BREAK key or

by a STOP statement in the program), type CONT and B3S3
to continue execution at the point where the stop or break occurred.

During such a break or stop in execution, you may examine variable

values (using PRINT) or change these values. Then type CONT and

B3B3 and execution will continue with the current variable values.

CONT, when used with STOP and the BREAK key, is primarily a

debugging tool.

NOTE: You cannot use CONT after EDITing your program lines

or otherwise changing your program. CONT is also invalid after

execution has ended normally.

See also STOP.

CSAVE "file name"

Stores the resident program on cassette tape. (Cassette recorder

must be properly connected, cassette loaded, and in the Record
mode, before you enter the CSAVE command.) You must specify

a file-name with this command. This fiie-name may be any alpha-

numeric character other than double-quotes ("). The program

stored on tape will then bear the specified file-name, so that it can

be located by a CLOAD command which asks for that particular

file-name. You should always write the appropriate tile-names on
the cassette case for later reference.

Examples:

CSAVE "1" dumps resident program and attaches label
"1"

CSAVE "A" dumps resident program and attaches label "A"

See also CLOAD.

DELETE line number-line number
Erases program lines from memory. You may specify an individual

line or a sequence of lines, as follows:

DELETE line number erases one line as specified

DELETE line number-line number erases all program lines starting

with first line number specified

and ending with last number
specified

DELETE-Zi'ne number erases all program lines up to

and including the specified

number

The upper line number to be deleted must be a currently used number.

2/3

BE

Examples:

DELETE 5 erases line 5 from memory (error it line 5

not used)

DELETE 11-18 erases lines 1 1, 18 and every line in between

If you have just entered or edited a line, you may delete that line

simply by entering DELETE, (use a period instead of the line

number).

EDIT line number
Puts the Computer in the Edit Mode so you can modify your resident

program. The longer and more complex your programs are, the more
important EDIT will be. The Edit Mode has its own selection of
subcommands, and we have devoted Chapter 9 to the subject.

LIST line number-line number
Instructs the Computer to display all program lines presently stored

in memory. If you enter LIST without an argument, the entire

program will scroll continuously up the screen. To stop the auto-

matic scrolling, press SHIFT and @ simultaneously. This will freeze

the display. Press any key to release the "pause" and continue the

automatic scrolling.

To examine one line at a time, specify the desired line number as

an argument in the LIST command. To examine a certain sequence
of program lines, specify the first and last lines you wish to

examine.

Examples:

LIST 50 displays line 50
LIST 50-150 displays line 50, 150 and everything in between
LIST 50- displays line 50 and all higher-numbered lines

list. displays current line (line just entered or edited)

LIST -50 displays all lines up to and including line 50

NEW
Erases all program lines, sets numeric variables to zero and string

variables to null. It does not change the string space allocated by a

previous CLEAR number statement.

RUN line number
Causes Computer to execute the program stored in memory. If no
line number is specified, execution begins with lowest numbered
program line. If a line number is specified, execution begins with

the line number. (Error occurs if you specify an unused line number.)
Whenever RUN is executed. Computer also executes a CLEAR.

MlMgiifV'^-:.""..^." . ..

2/4

Qga '*»,'m - „„ .' a .
'
-l ..i la -' i sen iangi anam—

Examples:

RUN execution begins at lowest-numbered line

run 100 execution begins at line 100

RUN may be used inside a program as a statement; it is a convenient
way of starting over with a clean slate for continuous-loop programs
such as games.

SYSTEM
Puts the Computer in the Monitor Mode, which allows you to load
object files (machine-language routines or data). Radio Shack
offers several machine-language software packages, such as-the

IN-MEMORY INFORMATION SYSTEM. You can also create your
own object files using the TRS-80 EDITOR/ASSEMBLER, which
is itself an object file.

To load an object file: Type system and H3H3
*? will be displayed. Now enter the file-name (no quotes are

necessary) and the tape will begin loading. When loading is com-
plete, another

*? will be displayed. Type in a slash-symbol / followed by the

address (in decimal form) at which you wish execution to begin. Or
you may simply hit the slash-symbol and ESH33 without any
address. In this case execution will begin at the address specified by
the object file.

TROFF
Turns off the Trace function. See TRON.

TOON
Turns on a Trace function that lets you follow program-flow for

debugging and execution analysis. Each time the program advances

to a new program line, that line number will be displayed inside a

pair of brackets.

For example, enter the following program:

10 PRINT "START"
20 PRINT "GOING"
30 GOTO 20
40 PRINT "GONE..

Now type in TRON, Hgjjg , and RUN, H.'HJil

<10> START
<20> GOING
<30> <20> GOING
<30> <20> GOING
etc.

2/5

(Press SHIFT and @ simultaneously to pause execution and freeze

display. Press any keyjto continue with execution.)

As you can see from the display, the program ii in an infinite loop.

The numbers show you exactly what is going on. (To stop execution,

hit BREAK key.)

To turn off the Trace function, enter TROFF. TRON and TROFF
may be used inside programs to help you tell when a given line is

executed.

For example

50 TRON
*0 X»X*3.14159
70 TROFF
might be helpful in pointing out every time line 60 is executed
(assuming execution doesn't jump directly to 60 and bypass 50).

Each time these three lines are executed, <60> <70> will be
displayed. Without TRON, you wouldn't know whether the program
was actually executing line 60. After a program is debugged, TRON
and TROFF lines can be removed.

2/6

Baagagggg; zs=ssxz^xsssa^aamamtasaaaam~

3/Input-Output

The statements described in this chapter let you
send data from Keyboard to Computer, Computer
to Display, and back and forth between Computer
and the Cassette interface. These wii! primarily be
used inside programs to input data and output
results and messages.

Statements covered in this chapter:

PRINT INPUT
@ (PRINT modifier) DATA
TAB (PRINT modifier) READ
USING (PRINT formatter) RESTORE

PRINT # (Output to Cassette)

INPUT # (Input to Cassette)

PRINT item list

Prints an item or a list of items on the Display. The items may be
either string constants (messages enclosed in quotes), string variables,

numeric constants (numbers), variables, or expressions involving all

of the preceding items. The items to be PRINTed may be separated

by commas or semi-colons. If commas are used, the cursor

automatically advances to the next print zone before printing the

next item. If semi-colons are used, no space is inserted between

the items printed on the Display.

Examples:

30 x-s
100 PRINT 23; "IS EQUAL TO"; X i 2

RUN

25 IS EQUAL. TO 23

10 AS*"STRING"
20 PRINT AS;A$,A»:" ";A%

RUN
STRINGSTRING STRING STRING

Positive numbers are printed with a leading blank (instead of a plus

sign); all numbers are printed with a trailing blank; and no blanks are

inserted before or after strings (you can insert them with quotes
as in line 20.

3/1

E2E

10 PRINT "ZONE r\"ZON£ Z","ZONE 3"."ZONE 4'\"ZONE 1 ETC"

RUN
ZONE 1 ZONE 2 ZONE 3 ZONE*
ZONE I ETC

There are four 16-character print zones per line.

10 PRINT "ZONE 1"„"ZONC 3"

RUN
ZONE 1 ZONE 3

The cursor moves to the next print zone each time a comma is

encountered.

10 PRINT "PRINT STATEMENT #10 ":

20 PRINT "PRINT STATEMENT #20"

RUN
PRINT STATEMENT #10 PRINT STATEMENT #20

A trailing semi-colon over-rides the cursor-return so that the next

PRINT begins where the last one left off (see line 10).

If no trailing punctuation is used with PRINT, the cursor drops down
to the beginning of the next line.

PRINT @ position, item list

Specifies exactly where printing is to begin. (AT was used in LEVEL
I BASIC.) The @ modifier must follow PRINT immediately, and the

location specified must be a number from to 1023. Refer to the

Video Display worksheet, Appendix E, for the exact position of each

location 0-1023:

100 PRINT • 550. "LOCATION 550"

RUN this to find out where location 550 is.

Whenever you PRINT @ on the bottom line of the Display, there is

an automatic line-feed, causing everything displayed to move up

one line. To suppress this, use a trailing semi-colon at the end of

the statement.

Example:

100 PRINT • 1000, 1000;

PRINT TAB (expression)

Moves the cursor to the specified position on the current line (or

on succeeding lines if you specify TAB positions greater than 63).

TAB may be used several times in a PRINT list.

The value at expression must be between and 255 inclusive.

3/2

'
"W.TJ.'

tffglS^UfBft BJ^ fJgBBWIBgW

Example:

10 PRINT TAB[3) "TABBED 5";TAB{25) "TABBED 23"

No punctuation is required after a TAB modifier.

5 X-3
10 PRINT TAB(X) X: TAB(X I 2) X *2;TAB(Xi 3) X * 3

Numerical expressions may be used to specify a TAB position.

This makes TAB very useful for graphs of mathematical functions,

tables, etc. TAB cannot be used to move the cursor to the left. If

cursor is beyond the specified position, the TAB is ignored.

PRINT USING string; item list

PRINT USING - This statement allows you to specify a format for

printing string and numeric values. It can be used in many applica-

tions such as printing report headings, accounting reports, checks

... or wherever a specific print format is required.

The PRINT USING statement uses the following format:

PRINT USING string ; value

String and value may be expressed as variables or constants. This

statement will print the expression contained in the string, inserting

the numeric value shown to the right of the semicolon as specified

by the field specifiers.

The following field specifiers may be used in the string;

This sign specifies the position of each digit located in the

numeric value. The number of # signs you use establishes the

numeric field. If the numeric field is greater than the number
of digits in the numeric value, then the unused field positions

to the left of the number will be displayed as spaces and

those to the right of the decimal point will be displayed as

zeros.

The decimal point can be placed anywhere in the numeric

field established by the # sign. Rounding-off will take place

when digits to the right of the decimal point are suppressed.

The comma — when placed in any position between the first

digit and the decimal point - will display a comma to the left

of every third digit as required. The comma establishes an

additional position in the field.

** Two asterisks placed at the beginning of the field will cause all

unused positions to the left of the decimal to be filled with

asterisks. The two asterisks will establish two more positions

in the field.

3/3

SS Two dollar signs placed a! the i-c^i-nir.,; of the field wiil act

as a Moating dollar sign. That is, it will occupy the first position

preceding the number.

**S If these three signs are i^ed at the he^nnir.g ot" the field, then

the vacant positions to the left 01' the number will be filled by

the * sign and the S sign will :igain position itself in the first

position preceding the number.

+ When a + si-gn is placed at the beginning or end of the field, it

will be printed as specified as a + for positive numbers or as

a - for negative numbers.

— When a - sign is placed at the end oi the field, it will cause a

negative >ign to appear alter all negative numbers and will

appear as a space for positive numbers.

%spaces% To specify a string field of more than one character,

nsp.ms '"':
is used. The length of the string field will be 2

plus the number of spaces between the percent signs.

! Causes the Computer to use the first string character of the

current value.

The following program will help demonstrate these format specifiers:

10 INPUT A$. A
20 PRINT USING AS;

A

30 GOTO 10

RUN this program and try various specifiers and strings for AS and

various values for A.

For Example:

RUN
T ##.#». 12. 12

12.12

7 i«*.»j, 12.12

12.12

T »*.»», 121.21

% 121.21

The % sign is automatically printed it" ih.- field ;s not I.iree

enough to contain the number of Jiiits I Jund in the m;;:.eric

value. The entire number to the left of the decimal will be

displayed preceded by this >ign.

T *».»», 12.127

12.13

Note that the number was rounded to two decimal places.

KTIV-. '
,•:.•• " -1Z—Z1

3/4

7 +*#.w»,!2.|Z
+ 12.12

T + ##.##. -12.12

-12.12

7 #»,*#+, 12. 12

12.12+

7 *#.##+, -12.12

1 2. 1 2-

? #s*.#s»-, 12.12

12.12

T *#.##-, -12.12

1 2. 1 2-

7 **#*. 12.12

"12
7 **##.##, 1212.12
1212.12

? SS**.»*. 12.12

SI2.12
7 '• ##,**##", 12121.2

12.121.2

7 *###,#, 12121.2
12,121

7 ###. 1212
% 1212

Another way of using the PRINT USING statement is with the string

field specifiers "!" and ?ospaces %.

Examples:

PRINT USING "i": string

PRINT USING "% %"; String

The **!" sign will allow only the first letter of the string to be printed.

The "% spaces %" allows spaces +2 characters to be printed. Again,

the string and specifier can be expressed as string variables. The
following program will demonstrate this feature:

10 INPUT AS. BS
20 PRINT USING AS; BS
30 GOTO 10

and RUN it:

7 I, ABCDE
A

7 %%, ABCDE
AS

? % V ABCO

Multiple strings or string variables can be joined together (concatenated)

by these specifiers. The **!" sign will allow only the first letter of each

string to be printed. For example:

10 INPUT AS. BS. CS
20 PRINT USING "l"; AS; BS: CS

E - - -- >;.,.,.-.. :-rr.

3/5

And RUN it . .

.

7 ABC.DEF.GHI
-ADS

By using more than one '*!" sign, the first letter of each string will

be printed with spaces inserted corresponding to the spaces inserted

between the "!" signs. To illustrate this feature, make the following

change to the last little program:

20 PRINT USING "]
I I"; AS, B$. CS

And RUN it . .

.

T ABC.DEF.GHI
A D G

Spaces now appear between letters A, D and G to correspond with

those placed between the three "!" signs.

Try changing"! ! !" to "%%" in line 20 and run the program.

The following program demonstrates one possible use for the PRINT
USING statement.

10 CLS
20 AS *'•**«##.######.## DOLLARS"
30 INPUT "WHAT IS YOUR FIRST NAME"; FS
40 INPUT "WHAT IS YOUR MIDDLE NAME": MS
90 INPUT "WHAT IS YOUR LAST NAME"; LS
60 INPUT -ENTER THE AMOUNT PAYABLE"; P
70 CLS: PRINT "PAY TO THE ORDER OF ";

80 PRINT USING "11 II "; FS; ".": M$; ".":

90 PRINT LS
100 PRINT: PRINT USING AS; P
110 GOTO 1 10

RUN the program. Remember, to save programming time, use Che
"?" sign for PRINT. Your display should look something like this:

WHAT IS YOUR FIRST NAME? JOHN
WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE7 12343.8

PAY TO THE ORDER OF J. P. JONES

*****••$! 2.343.80 DOLLARS

If you want to use an amount greater than 999,999 without

rounding off or going into scientific notation, then simply add the

double precision sign (#) after the variable P in Lines 60 and 100.

You will then be able to use amounts up to 16 decimal places* long.

3/6

INPUT item list

Causes Computer to stop execution until you enter the specified

number of values via th; keyboard. The INPUT statement may-

specify a list of str>g or numeric variables to be input. The items in

the list musl be separated by commas.

100 INPUT XS, XI, ZS, Z1

This statement calls for you to input a string-literal, a number,
another string literal, and another number, in that order. When the

statement is encountered, the Computer will display a

You may then enter the values all at once or one at a time. To enter

values all at on--:i, separate them by commas. (If your string literal

includes leading blanks, colons, or commas, you must enclose the

string in quotes.)

For example, when line 1 00 (above) is RUN and the Computer is

waiting for your input, you could type

JIM. 50. JACK, 40 t LiLliiiJ '

The Comcuter will assign values as follows:

If you ES3J tntf values one at a time, the Computer will

display a

. . . indicating that more data is expect:d. Continue entering data

until all the variables have been set, at which time the Computer

will advance to the next statement in your program.

Be sure to enter The correct type 0\ v ilue according to what is ca'!e>

for by the INPUT statement. For example, you can't inriat a

string-value into a numerical variable. 1!" you try so. the Computer

will display a

and give you another chance to enter the correct type of data value,

starting with the first value called for by the INPUT list.

NOTE: You cannot input an expression into a numerical value -

you must input a simple numerical constant. (LEVEL I allowed

you to input an expression or even a variable into a numerical

variable.)

3/7

Example:

too INPUT XI, YIS
200 PRINT XI, YIS

RUN
?_ [you type:] 7*3 1 02523

)

T REDO
t_ [you type:] 10 (02233)
r»_ [you type:] "this is a comma:

10 THIS IS A COMMA:,

It was necessary to put quotes around "THIS IS A COMMA:,"
because the string contained a comma.

If you HZH33 more data elements than the INPUT statement
specifies, the Computer will display the message

7EXTRA IGNORED
and continue with normal execution of your program.

You can also include a "prompting message" in your INPUT
statement. This will make it easier to input the data correctly. The
prompting message must immediately follow "INPUT*, must be
enclosed in quotes, and must be followed by a semi-colon.

Example:

100 INPUT "ENTER YOUR NAME AND AGE (N AME,AGE)".NS.A

(RUN)

ENTER YOUR NAME AND AGE (NAME,AGE)?_

DATA item list

Lets you store data inside your program to be accessed by READ
statements. The data items will be read sequentially, starting with
the first item in the first DATA statement, and ending with the last

item in the last DATA statement. Items in a DATA list may be
string or numeric constants — no expressions are allowed. If your
string values include leading blanks, colons or commas, you must
enclose these values in quotes.

It is important that the data types in a DATA statement match up
with the variable types in the corresponding READ statement.

DATA statements may appear anywhere it is convenient in a

program. Generally, they are placed consecutively, but this is not
required.

3/8

Examples:

500 READ N1S.NZ5.N1.N2
!Q00 DATA "SMITH, J. R. "."WILSON. T.M.'

2000 DATA 130,175

See READ, RESTORE.

READ item list

Instructs the Computer to read a value from a DATA statement

and assign that value to the specified variable. The first time a

READ is executed, the first value in the first DATA statement

will be used; the second time, the second value in the DATA
statement will be read. When all the items in the first DATA
statement have been read, the next READ will use the first

value in the second DATA statement; etc. (An Out-of-Data error

occurs if there are more attempts to READ than there are

DATA items.) The following program illustrates a common
application for READ/DATA statements.

50 PRINT "NAME","AGE"
100 READ N3
110 IF NS="END" PRINT "ENDOF I_IST":END

120 READ AGE
130 IF AGE < 18 PRINT NS,AGE
140 GOTO100
150 DATA "SMITH, JOHN", 30,"ANDERSON,T.M. ",20

160 DATA "JONES, BILL", 1 3,
,- DOE,SALLY",2I

170 DATA 'COLLINS,W. P.", 17,END

RUN

NAME AGE
JONES, BILL 15

COLLINS.V/.P. 17

END OF LIST

READY
>_

The program locates and prints all the minors' names from the data

supplied. Note the use of an END string to allow READing lists of

unknown length.

See DATA, RESTORE

3/9

RESTORE
Causes the next READ statement executed to start over with the

first item in the first DATA statement. This lets your program re-use

the same DATA lines.

Example:

too READ X
1 to RESTORE
120 READ Y
130 PRINT X,Y
140 DATA 50. SO

Because of the RESTORE statement, the second READ statement

starts over with the first DATA item.

See READ, DATA

PRINT #-1, item list

Prints the values of the specified variables onto cassette tape.

(Recorder must be properly connected and set in Record mode when
this statement is executed.) The PRINT * statement must always

specify a device number. This is because the TRS-80 can actually

input/output to two cassette machines, once you've added the

Expansion Interface described in Chapter 10. For normal use with

just one recorder connected, the device number must be -1, e.g.,

PRINT #-1 (followed by a comma and then the item list).

Example:

5 A1=-30.334:BS=-"STRING-VALUE"
10 PRINT#-1.A1.BS. "THAT'S ALL"

This stores the current values of Al and BS. and also the string-literal

"THAT'S ALL". The values may be input from tape later m-.r.g. the

INPUT* statement. The INPLT- sTjterr.erii must be identical :o the

PRINT* statement in terms of number and tvpe of items in the

PR1NT#/INPUT* lists. See INPUT* .

Special Note:

The values re present-.'-. I ir: Hem /.'»; rr,::il no! exceed 255 ch if:icter->

tola!; otherwise all .h meters a:vr .'... !:r-; 255 ..:!! "e tr.;r^Ji-'.i

For example, PRINT *-1.A = .3 = .C=.D3.;:=.Fs.G = .H::,!~.J-. AS
will probably exceed Ihe maximum rj..ird l.-n^ili u \S :< Y;...>t

than about 75 characters. In such a case. A> would not tv recorded.

and when you try to 1NPUT#-1 the data, an Ol.) (Out of Daia)

error will occur.

B'.T ;:
"

'

—

~

::^^i:_ - :-_":

3/io

INPUT #-1, item list

Inputs the specified number of values stored on cassette and assigns

them to the specified vjriable names. Like the PRINT* statement,

INPUT* requires that you specify a device number. (This will make
more sense when you have added the Expansion Interface and are

using a dual cassette system. See Chapter 10.) Use Device number -I

for normal applications without the Expansion Interface, e.g.,

INPUT*- 1, list.

Example:

50 INPUT *-l,X.PS.TJ

When this statement is executed, the Computer will tum on the tape

machine, input values in the order specified, then tum off the tape

machine and advance to the next statement. If a string is encountered

when the INPUT list calls for a number, a bad file data error will

occur. If there are not enough data items on the tape to "fill" the

INPUT statement, an Out of Data error will occur.

The Input list must be identical to the Print list that created the

taped data-block (same number and type of variables in the same
sequence.)

Sample Program
Use the two-line program supplied in the PRINT* description

to create a short data file. Then rewind the tape to the beginning of

the data file, make ail necessary connections, and put cassette machine

in Play mode. Now run the following program.

10 INPUT*-1.A!.BS,LS
20 PRINT A1.9S.LS

30 IF L3="THAT'S ALL"END
40 GOTO 10

This program doesn't care how long or short the data file is, so long

as:

1) the file was created by successive PRINT** statements

identical in form to line 10

2) the last item in the last data triplet is "THAT'S ALL".

3/11

4/Program Statements

LEVEL II BASIC makes several assumptions about
how to run your programs. For example:
* Variables are assumed to be single-precision (unless

you use type declaration characters — see Chapter 1,

"Variable Types").
* A certain amount of memory is automatically set

aside for strings and arrays - whether you use all of
It or not.

* Execution is sequential, starting with the first

statement in your program and ending with the last.

The statements described in this chapter let you
over-ride these assumptions, to givejroar programs
much more versatility and power.

NOTE: Ali LEVEL II statements except INPUT
and INPUT* can be used in the Command Mode as

well as in the Execute Mode.

Statements described in this chapter:

Tests

Type Assignment Sl Sequence of (Conditional

Definition Allocation Execution Statements)

DEFINT CLEAR n END IF

DEFSNO DIM STOP THEN
DEFDBL LET GOTO ELSE
OEFSTR GOSUB

ON . . . GOTO
ON . . . GOSUB
FOR-NEXT-STEP
ERROR
ON ERROR GOTO
RESUME
REM

This chapter also contains a discussion of data conversion in LEVEL
II BASIC; this wilt let you predict and control the way results of

expressions, constants, etc., will be stored — as integer, single

precision or double precision.

DEFINT letter range

Variables beginning with any letter in the specified range will be
stored and treated as integers, unless a type declaration character is

added to the variable name. This lets you conserve memory, since

4/1

aaaa

integer values take up less memory than other numeric types. And
integer arithmetic is faster than single or double precision arithmetic.

However, a variable~de fined as integer cart only take on values

between —32768 and +32767 inclusive.

Examples:

10 DEFINT A, I.N

After line 10, all variables beginning with A, I or N will be treated

as integers. For example," Al, AA, 13 and NN will be integer variables.

However, At #, AA#, I3» would still be double precision variables,

because of the type declaration characters, which always over-ride

DEF statements.

to DCFINT l-N

Causes variables beginning with I, J, K, L, M or N to be treated

as integer variables.

DEFINT may be placed anywhere in a program, but it may change
the meaning of variable references without type declaration characters.

Therefore it is normally placed at the beginning of a program.

See DEFSNG, DEFDBL, and Chapter I, "Variable Types".

DEFSNG tetter range

Causes any variable beginning with a letter in the specified range to

be stored and treated as single precision, unless a type declaration

character is added. Single precision variables and constants are stored

with 7 digits of precision and printed out with 6 digits of precision.

Since all numeric variables are assumed to be single precision unless

DEFined otherwise, the DEFSNG statement is primarily used to

re-define variables which have previously been defined as double

precision or integer.

Example:

100 DCFSNG I. W-Z

Causes variables beginning with the letter I or any letter W through Z
to be treated as single precision. However, 1% would still be an
integer variable, and I# a double precision variable, due to the use

of type declaration characters.

See DEFINT, DEFDBL, and Chapter 1, "Variable Types".

DEFDBL letter range

Causes variables beginning with any letter in the specified range to

be stored and treated as double-precision, unless a type declaration

character is added. Double precision allows 17 digits of precision; 16

digits are displayed when a double precision variable is PRINTed.

im.'i.'.,!.,.u'.. ..".. "-..'."' :J:;y -
y."..7.T v.

4/2

Example:

10 DEFDBL S-Z, A-E

Causes variables beginning with one of the letters S through Z or

A through E to be double precision.

DEFDBL is normally used at the beginning of a program, because it

may change the meaning of variable references without type

declaration characters.

See DEFINT, DEFSNG, and Chapter 1, "Variable Types".

DEFSTR letter range

"Causes variables beginning with one of the letters in the specified

range to be stored and treated as strings, unless a type declaration

character is added. If you have CLEARed enough string storage

space, each string can store up to 255 characters.

Example:

10 OEFSTR L-Z

Causes variables beginning with any letter L through Z to be string

variables, unless a type declaration character is added. After line 10

is executed, the assignment LI - "WASHINGTON" will be valid.

See CLEAR n. Chapter 1 , "Variable Types", and Chapter 5.

CLEAR n

When used with an argument n (n can be a constant or an expression),

this statement causes the Computer to set aside n bytes for string

storage. In addition all variables are set to zero. When the TRS-80 is

turned on, 50 bytes are automatically set aside for strings.

The amount of string storage CLEARed must equal or exceed the

greatest number of characters stored in string variables during

execution; otherwise an Out of String Space error will occur.

Example:

10 CLEAR 1000

.Makes 1000 bytes available for string storage.

By setting string storage to the exact amount needed, your program

can make more efficient use of memory. A program which uses no

string variables could include a CLEAR statement, for example.

The CLEAR argument must be non-negative, or an error will result.

DIM name (diml, dim!, . . ., dirnK)

Lets you set the "depth" (number of elements allowed per dimen-

sion) of an array or list of arrays. If no DIM statement is used, a

depth of 1 1 (subscripts 0-10) is allowed for each dimension of each

array used.

4/3

Example:

10 DIM A(5),B(2,3),CS(20J

Sets up a one-dimension array A with subscripted elements 0-5;

a two-dimension array B with subscripted'elements 0,0 to 2,3; and.

a one-dimension string array CS with subscripted elements 0-20.

Unless previously defined otherwise, arrays A and B will contain

single-precision values.

DIM statements may be placed anywhere in your program, and the

depth specifier may be a number or a numerical expression.

Example:

40 INPUT "NUMBER OF NAMES";N
SO DIM NA(N,2)

To re-dimension an array, you must first use a CLEAR statement,,

either with or without an argument. Otherwise an error will result.

Example Program:

10 AA(4) • 11.3

20 DIM AA{7)

RUN

tOO ERROR IN 20

See Chapter 6, ARRAYS.

LET variable = expression

May be used when assigning values to variables. RADIO SHACK
LEVEL II does not require LET with assignment statements, but
you might want to use it to ensure compatibility with those

versions of BASIC that do require it.

Examples:

100 LET A3-"A ROSE IS A ROSE"
110 LET B1-1.23
120 LETX-X-21

In each, case, the variable on the left side of the equals sign is

assigned the value of the constant or expression on the right side.

END
Terminates execution normally (without a BREAK message).

Some versions of BASIC require END as the last statement in a

program; with LEVEL II it is optional. END is primarily used to

force execution to terminate at some point other than the logical

end of the program.

4/4

Example:

10 INPUT 51,52

20 GOSUB 100

99 END
100 H-SQR(S!*S1 -

110 RETURN

The END statement in line 99 prevents program control from
"crashing" into the subroutine. Now line 100 can only be accessed

by a branching statement such as 20 GOSUB 100.

STOP
Interrupts execution and prints a BREAK IN line number message.

STOP is primarily a debugging aid. During the break in execution,

you can examine or change variable values. The command CONT
can then be used to re-start execution at the point where it left off.

(If the program itself is altered during a break, CONT cannot be

used.)

Example:

10 X-RND(IO)
1 5 STOP
ZO GOSUB 1000

BREAK IN 13

READY

Suppose we want to examine what value for X is being passed to the

subroutine beginning at line 1000. During the break, we can examine

X with PRINT X. (You can delete line 1 5 after the program is

debugged.)

GOTO line number
Transfers program control to the specified line number. Used alone,

GOTO line number results in an unconditional (or automatic) branch;

however, test statements may precede the GOTO to effect a con-

ditional branch.

Example:

200 GOTO 10

When 200 is executed, control will automatically jump back to

line 10.

4/5

You can use GOTO in the Command Mod.' as an alter;

GOTO ///if number causes execution ro bceiri at the sn

number, without an automatic CLEAR. Tills lets you
,

assigned in the Command Mode to variables in the Exi

See IF.THEN.ELSE.ON... GOTO.

GOSUB /7/ze number
Transfers program control to the subroutine beginning at t!ie

specified line number. When the Computer encounters a RETURN
statement in the subroutine, it will then return control to the

statement which follows GOSUB. GOSUB, like GOTO may be

preceded by a test statement. Sea IF.THEN.ELSE.ON... GOSUB.

Example Program:

100 GOSUB 200
110 PRINT "BACK FROM SUBROUTINE": END
200 PRINT "EXECUTING THE SUBROUTINE"
210 RETURN

(RUN)

EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE

Control branches from line 100 to the subroutine beginning at line

200. Line 210 instructs Computer to return to the statement
immediately following GOSUB, that is, line 110.

RETURN
Ends a subroutine and returns control to statement immediately
following the most recently executed GOSUB. 11' RETURN is

encountered without execution of a matching GOSUB, an error will

occur. See GOSUB.

ON n GOTO line number, line number
This is a multi-way branching statement that is controlled by a test

variable or expression. The general format for ON n GOTO is:

ON expression goto 1st line number, 2nd line number, K:h line

expression must be between (J and 255 inclusive.

When ON . . . GOTO is executed, first Ihe expression is evaluated and
the integer portion . . . INT(expression) ... is obtained. We'll refer

to this integer portion as J. The Computer counts over to the Jth

4/6

element in the line-number list, and then branches to the line number
specified by that element. IF there is no Jth element (that is, if

J > K in the general format above), then control passes to the next

statement in the program.

If the test expression or number is less than zero, an error will occur.

The line-number list may contain any number of items.

For example,

100 ON Ml GOTO ISO, 160, 170, T30, 180

says "Evaluate MI. If integer portion of MI equals I then go to

line ISO;

If it equals 2, then go to 160;

If it equals 3, then go to 170;

If it equals 4, then go to 150;

If it equals 5, then go to 180;

If the integer portion of MI doesn't equal any

of the numbers 1 through 5, advance to the

next statement in the program."

Sample Program Using on n GOTO
100 INPUT "ENTER A NUMBEB":X
200 ON SGN(X)*2 GOTO Z20.230.2dO

220 PRINT "NEGATIVE":END
230 PRINT "ZERO";END
240 PRINT "POSITIVE";END

SGN(X) retunu - 1 for X less than zero; for X equal to zero; and
+1 for X greater than 0. By adding 2, the expression takes on the

values 1, 2, and 3, depending on whether X is negative, zero, or

positive. Control then branches to the appropriate line number.

ON n GOSUB line number, . . ., tine number

Works like ON n GOTO, except control branches to one of the

subroutines specified by the line numbers in the line-number list.

Example:

100 INPUT "CHOOSE I. 2 OR 3":I

tOS ON I GOSUB 200,300,400

110 END
200 PRINT "SUBROUTINE #I";RETURN
300 PRINT "SUBROUTINE #2":RETURN
«00 PRINT "SUBROUTINE #3":RETURN

The test object n may be a numerical constant, variable or

expression. It must have a non-negative value or an error will occur.

See ON n GOTO.

4/7

1

FOR name -exp TO exp STEP exp
NEXT name

Opens an iterative (repetitive) loop so that a sequence of program

statements may be executed over and over a specified number of
times. The general form is (brackets indicate optional material):

line # for counter-variable = initial value TO final value [step increment]

[program statements]

line # next [counter-variable]

In the FOR statement, initial value, final value and increment

can be constants, variables or expressions. The first time the FOR
statement is executed, these three are evaluated and the values are

saved; if the variables are changed by the loop, it will have no effect

on the loop's operation. However, the counter variable must not be
changed or the loop will not operate normally.

The FOR-NEXT-STEP loop works as follows: the first time the FOR
statement is executed, the counter is set to the "initial value."

Execution proceeds until a NEXT statement is encountered. At this

point, the counter is incremented by the amount specified in the

STEP increment. (If the increment has a negative value, then

the counter is actually decremented.) If STEP increment is not used,

an increment of 1 is assumed.

Then the counter is compared with the final value specified in the

FOR statement. If the counter is greater than the final value, the

loop is completed and execution continues with the statement
following the NEXT statement. (If increment was a negative

number, loop ends when counter is less than final value.) If the

counter has not yet exceeded the final value, control passes to

the first statement after the FOR statement.

Example Programs:

10 FOR 1-10 TO 1 STEP -1

20 PRINT I ;

30 NEXT

10 9 6 7 S 5 4

FOR K = TO 1 STEP .3

PRINT K;

NEXT

4/3

After K= 9 is incremented by .3. K=1.2. This is greater than the

final value 1 . therefore loop ends without ever printing/i/w/

value.

10 FOR >4TO0
20 PRINT K;

30 NEXT

No STEP is specified, so STEP 1 is assumed After K is incremented

the first time, its value is 5. Since 5 is greater than the final value

0. the loop cads.

10 J = 3 : K = S : L=2
20 FOR l-J TO K*1 STEP L
25 J=0 : K=0 : J=0
30 PRINT I;

40 NEXT

.The variables and expressions in line 20 are evaluated once and these

values become constants for tru- FOR-NEXT-STEP loop. Changing

the variable values later has no effect on the loop.

FOR-NEXT loops may be "nested":

10 FOR I-1T03
20 PRINT "OUTER LOOP"
30 FOR J = l TO 2

40 PRINT " INNER LOOP"
50 NEXT J

60 NEXT I

4/9

Br*.fl",',, "':! ":
: ::: t

1

::
•

:

i

; ;

;; •• ,•
,

—
RUN

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

Note that each NEXT statement specifies the appropriate counter
variable; however, this is just a programmer's convenience to help

keep track of the nesting order. The counter variable may be
omitted from the NEXT statements. But if you do use the counter
variables, you must use them in the right order; i.e., the counter
variable for the innermost loop must come first.

It is also advisable to specify the counter variable with NEXT
statements when your program allows branching to program lines

outside the FOR-NEXT loop.

Another option with nested NEXT statements is to use a

counter variable list.

Delete line 50 from the above program and change line 60:

60 NEXT J,

I

Loops may be nested 3-deep, 4-deep, etc. The only limit is the

amount of memory available.

ERROR code

Lets you "simulate" a specified error during program execution.

The major use of this statement is for testing an ON ERROR GOTO
routine. When the ERROR code sratement is encountered, the Com-
puter will proceed exactly as if that kind of error had occurred. Refer

to Appendix B for a listing of error codes and their meanings.

Example Program:

100 ERROR 1

?NF ERROR
READY

1 is the error code for "attempt to execute NEXT statement without
a matching FOR statement".

See ON ERROR GOTO, RESUME.

4/10

ON ERROR GOTO line number
When the Computer encounters any kind of error in your program,

it normally breaks out of execution and prints an error message.

With ON ERROR GOTO, you can set up an error-trapping routine

which will allow your program to "recover" from an efror and

continue, without any break in execution. Normally you have a

particular type of error in mind when you use the ON ERROR
GOTO statement. For example, suppose your program performs

some division operations and you have not ruled out the

possibility of division by zero. You might want to write a routine

to handle a division-by-zero error, and then use ON ERROR GOTO
to branch to that routine when such an error occurs.

Example:

5 ON ERROR GOTO 100
10 C - 1/0

In this "loaded" example, when the Computer attempts to execute

line 10, a dividc-by-zero error will occur. But because of line 5,

the Computer will simply ignore line 10 and branch to the error-

handling routine beginning at line 100.

NOTE: The ON ERROR GOTO must be executed before the error

occurs or it will have no effect.

The ON ERROR GOTO statement can be disabled by executing an

ON ERROR GOTO 0. If you use this inside an error-trapping routine,

BASIC will handle the current error normally.

The error handling routine must be terminated by a RESUME
statement. See RESUME.

RESUME line number
Terminates an error handling routine by specifying where

normal execution is to resume.

RESUME without a line number and RESUME cause the Com-
puter to return to the statement in which the error occurred.

RESUME followed by a line number causes the Computer to

branch to the specified line number.

RESUME NEXT causes the Computer to branch to the statement

following the point at which the error occurred.

Sample Program with an Error Handling Routine

5 ON ERROR GOTO 100

10 INPUT "SEEKING SQUARE ROOT OF":X
20 PRINT SQR(X|
30 GOTO 10

100 PRINT "IMAGINARY ROOT:"; SQR(-X);"*!"

110 RESUME 10

4/11

RUN the program and try inpulfinj j r.:^;.\; vj! 1.:;.

REM
Instructs the Computer ta ignore :'.•: r.-vt of th: p.-oeram li-.\ ri'.is

allows you to insert comments (REV.'.rks) into -

} our prcaru::1
. for

documentation. Then, when you lor someone else) look .it a

listing of your program, it'll be a lot easier to figure out. If RLM is

used in a multi-statement program line, it must be the Last state-

ment.

Examples Program:

10 REM *

20 REM '

30 REM '

40 REM '

50 REM '

SO REM '

70 REM '

10 REM
90 INPUT

" THIS REMARK INTRODUCES THE PROGRAM
• AND POSSIBLY THE PROGRAMMER. TOO.

• THIS REMARK EXPLAINS WHAT THE
• VARIOUS VARIABLES REPRESENT:
• C - CIRCUMFERENCE R-RADIUS
• D » DIAMETER

RADIUS";R : REM THIS IS FIRST EXECUTABLE LINE

The above program shows some of the graphic possibilities of RLM
statements. Any alphanumeric character may be included in a REM
statement, and the maximum length is the same as that of other

statements: 255 characters total.

IN LEVEL II BASIC, an apostrophe "(SHIFT 7) may be used as

an abbreviation for :REM.

100 ' THIS TOO IS A REMARK

IF true/false expression action-clause

Instructs the Computer to test the following lojiical or relational

expression. If the expression is True, control will proceed to the

"action" clause immediately following the expression. If the

expression is False, control will jump to the matching ELSE state-

ment (if there is one) or down to the next program line.

In numerical terms, if the expression has a non-zero value, it is

always equivalent to a logical True.

Examples:

100 IF X>127 PRINT "OUT OF RANGE": END

if X is greater than 1
2"\ control *i:i p-«> to ti:e print ^atcr-em

and then to Ihe END itaienu-nl. Hut u X :. niii greater than I I"7 ,

control will jump d.iw-i m the next lii'.e in the program, skipping the

PRINT and END statements.

100 IF 0<-X AND X< '90 THEN Y'X-1 30

If hoth expressions are I'ru; then Y vw!| bt assigned the '-- X+l SO.

Otherwise control will pjss directly to the ne xi pr.vjrj: :i-, skipping

the THEN clause.

4/12

NOTE: THEN is option.il in the above and similar statements. How-

ever, THEN is sometimes required to eliminate an ambiguity. For

example. 400 if y-m then m-o won't work without THEN.

500 INPUTAS: IF AJ-"YES" THEN 100

600 INPUT AS : IF A5-"YES" GOTO 100

The two statements have the same effect. THEN is not optional in

line 500 and other if expression THEN line number statements.

100 IF A>0AND8>0 PRINT "BOTH POSITIVE"

The test expression may be composed of several relational expressions

joined by logical operators AND and OR.

See THEN, ELSE.

THEN statement or line number

Initiates the "action clause" of an IF-THEN type statement. THEN
is optional except when it is used to specify a branch to another

line number, as in IF A<o then 100. THEN should also be used in

IF-THEN-ELSE statements.

ELSE statement or line number

Used after IF to specify an alternative action in case the IF test fails.

(When no ELSE statement is used, control falls through to the next

program line after a test fails.)

Examples:

100 INPUT AS : IF AS-"YE5" THEN 300 ELSE END

In line 100, if AS equals "YES" then the program branches to line

300. But it' AS does not equal "YES", program skips over to the

ELSE statement which then instructs the Computer to end execution.

ZOO IF A<B PRINT"A<B"ELSE PRINT "B< -A"

If A is less than B. the Computer prints that fact, and then proceeds

down to the next program line, skipping the ELSE statement.

If A is not less than B, Computer jumps directly to the ELSE state-

ment and prints the specified message. Then control passes to the

next statement in the program.

ZOO IF A>001 THEN B-l/A : A - A/3 : ELSE 260

If A >. 001 is True, then the next two statements will be executed,

assigning new values to B and A. Then the program will drop down

to the next line, skipping the FUSE statement. But if A>. 001 is

4/13

False, tlit program rumps directly over to the lil.SU stJiemtfrlt,

which then instructs it to branch to lire I:iO. Note that GOTO is

not required afterELSE.

IF-THEN-ELSE statements may be nested, on; you :ia.e to lake

care to mateh up [lie IEs and ELSEs.

10 INPUT 'ENTER TWO NUMEIERS";A.B
20 IF A< -B THEN IF A<B PRINT A;:ELSE PRINT " N E I TH E F*

M
;: E LSE PRINT E

30 PRINT"15 SMALLER-

RUN the program, inputting various pairs of numbers. The ;>rogram

pieks out and prints the smaller of any two numbers you enter.

Note that the THEN statements and the colons may be omitted

from line 20.

Dnia Conversion

Every number used during execution must be typed as either

integer, single precision or double precision. Often this typng involves

converting a number from one form to another. This may produce
unexpected, confusing results -- unless you understand the rules

governing such automatic typing and type conversion.

Type Conversion

Constants are the actual numbers (not the variable names) used by
LEVEL II BASIC during execution. They may appear in your
program (as in X=l 3, the right side of the equation) or they may be

temporary (intermediate) constants created duri::g the evaluation of

an expression. In any ease, the following rules determine how a

constant is typed:

I. If a constant contains 3 or more digits, or if D is used in the

exponent, thai number is stored as double precision. Adding
a # declaration character also forces a constant to be stored

as double precision.

II. If the number is not double-precision, and if it is outside the

range -}27i,i to +3 27r>7 or if it contains a dec:i:'..il point,

[hen the number is stored as -.w^lc-precision. If :.'.::i:-.er :s

expressed in exponential notation v/ith L pr;ce.i::v^ the exponent,

the number is single precision,

IH. If neither I nor II is true of the constant, then it is .stored as

an integer.

Example Program:

10 PRINT I.2343S7. 1.2343578

1.23457

READY

4/14

The first constant contains 7 digits; so by Rules I and II, it becomes

a single-precision number. Single precision numbers .ire printed as

6 digits with the least significant digit properly rounded. But the

second constant contains H dieits, therefore by Rule I it becomes a

double precision number, stored internally as I.2.S45MSOUO0OOOOO.

The number is printed out with all eight significant digits showing,

and all the trailing zeros suppressed.

Typing of Constants

When operations are performed on one or two numbers, the result

/mist be typed as integer, double or single-precision.

When a +, -, or * operation is performed, the result will have the

same degree of precision as the most precise operand. For example,

if one operand is single-precision, and the other double-precision,

the result will be double precision. Only when both operands are

integers will a result be integer. If the result of an integer *, -, or +

operation is outside the integer range, the operation will be done in

single precision and the result stored as single precision.

Division follows the same rules as +, * and -, except that it is never

done at the integer level: when both operators are integers, the

operation is done in single precision with a single-precision result.

During a compare operation (< , >.=.etc.) the operands are converted

to the same type before they are compared. The less precise type

will always be converted to the more precise type.

If you are using logical operators for bit manipulations or Boolean

operations (see Chapter 8. "Logical Operators"), you'll need to

read the next paragraph: otherwise, skip it.

The logical operators AND. OR and NOT first convert their operands

to integer form. If one of the operands is outside the allowable ransw

for integers (-32768 to +32767) an overflow error occurs. The result

of a logical operation is always an integer.

Effects of Type Conversions on Accuracy

When a number is converted to integer type, it is "rounded down";

i.e.. the largest integer which is not greater than the number is used.

(This is the" same thine; that happens when the INT function is applied

to the number.)

When a number is converted from double to single precision, it is

"4.; 5 rounded" (the least significant digit is rounded up if the

fractional part > =5. Otherwise it is left unchanged).

4/15

In the following, examples^ keep.in mind that single precision variables

arc stored with 7 digits of precision, but printed out with 6 digits

(to allow for proper rounding). Similarly, double precision values are

stored with 17 digits but printed out with only 16.

Example Programs:

10 a#= 1.6666666666666667

20 BT-A#
30 C% = A#
40 PRINT Bl.C*

RUN

1.66667 1

READY

When a single precision number is converted to double precision,

only the seven most significant digits will be accurate. And if the single

precision number didn't contain seven significant digits, watch out!

Examples:

1.299999952316234
READY

A# = 2/3

PRINT Atf

.6666565865348816
READY

2/3 is converted to a single precision constant; therefore only the

first seven digits of A# are accurate.

Af= = 2/3*

PRINT A#

.S666666666665S667
READY

4/16

gg g gBUCSi

Since the expression 2/3* is evaluated as a double precision constant,

all 1 6 digits of A# are accurate, with the least significant properly

4/5— rounded.

When assigning a constant value to a double precision variable, be
sure to include as many significant digits as possible (up to 1 7).

If your constant has seven or less significant digits, you might as well

use single precision.

Examples:

1 Pl#"3.1 4 1 3926333897932
ZO E#-2.71 8281 8284590432

asaaznaagc

4/17

5/Strings

"Without string-handling capabilities, a computer is

just a super-powered calculator." There's an element

of truth in that exaggeration; the more you use the

string capabilities of LEVEL II, the truer the state-

ment will seem.

LEVEL I BASIC offered two string variables which
could be input and output to make your programs
look "friendly" (as in HELLO, bobi). In LEVEL II

you can do much more than that. First of all, you're
not limited to two strings — any valid variable name
can be used to contain string values, by the DEFSTR
statement or by adding a type declaration character

to the name. And each string can contain up to 255
characters.

Moreover, you can compare strings in LEVEL II, to

alphabetize them, for example. You can take strings

apart and string them together (concatenate them).

For background material to this chapter, see Chapter

1 , "Variable Types" and "Glossary", and Chapter 4,

DEFSTR.

Subjects and functions covered in this chapter:

"String Input/Output" fre (string) MIDS
"String Comparisons" INKEYS RIGHTS
"String Operations" LEN STRS
ASC LEFTS STRINGS
CHRS VAL

1NSTRING Subroutine

String Input/Output

String constants —sequences of alphanumeric characters — may be
input to a program just as numeric constants are input, using rNPUT,
READ/DATA, and INPUT # (input from cassette). They ma>
generally be input without quotes:

10 INPUT "YES OR NO";RS
20 IF RS-'-YES-PRINT'^THAT'S BEING POSIT! VEI":END
30 PRINT "WHY NOT?"

RUN

yes or NO?_[you typel yes f^^f

THAT'S BEING POSITIVE!
READY

5/1

=sa

However, to input a string constant which contains commas, colons,

or leading blanks, the string must be enclosed in quotes.

10 INPUT "LAST NAME, FIRST NAME";N$
20 PRINT NS

RUN

LAST NAME. FIRST NAME7 _ [you type:] "SMITH. JOHN"
oznxi
SMITH. JOHN
READY

The same rule regarding commas, colons and leading blanks applies

to values input via DATA statements and INPUT # statements.

10 READ T$, N*. DSJ

20 PRINT TS;NSJ;DS
30 DATA "TOTAL IS: "/'ONE THOUSAND, TWO HUNDRED
40 DATA DOLLARS.

TS requires quotes because of the colon;

NS requires quotes because of the comma.

String Comparisons

Strings may be compared for equality or alphabetic precedence.

When they are checked for equality, every character, including any
leading or trailing blanks, must be the same or the test fails.

COO IFZS-"ENO"THEN999

Strings'are compared character-for-character from left to right.

Actually the ASCII codes for the characters are compared, and the

character with the lower code number is considered to precede the

other character. (See Appendix C, ASCII Codes.)

For example, the constant "A!" precedes the constant **A#",
because "!" (ASCII code: decimal 33) precedes "#" (ASCII code:

decimal 35). When strings of differing lengths are compared, the

shorter string is precedent if its characters are the same as those in

the longer string. For example, "A" precedes "A
The following relational symbols may be used to compare strings;

<> < o > >-

Note: Whenever 3 string constant is used in a comparison expression

or an assignment statement, the constant must be enclosed in quotes:

AS--CONSTANT"
IF AS - "CONSTANT" PRINT A$

(The quotes are required in both cases.)

lupa i gsssrS=!SZ S3 SZS 35ZZ 5 "-"-"
I

..r-rrrr

5/2

isarasEsaac

String Operations

Not including the functions described below, there is only one string

operation - concatenation, represented by the plus symbol +.

Example Programs:

10 CLEAR 75

20 AS-"A ROSE"
30 B$»" IS A ROSE"
40 CS=-AS+BS+B$+BS+"."
50 PRINT CS

RUN

A ROSE IS A ROSE IS A ROSE IS A ROSE.
READY

In line 40, the strings are concatenated - strung together.

to TS-"I0O"
20 SUBS-"5"
30 CODE$«'*32L"
40 LC3«TS+"."+SUB3+CODE3
SO PRINT LCS

RUN

I00.332L
READY

ASC (string)

Returns the ASCII code (in decimal form) for the first character of

the specified string. The string-argument must be enclosed in

parentheses. A null-string argument will cause an error to occur.

100 PRINT ASCf'A")
1 10 TS-"A»": PRINT ASC(T$)

Lines 100 and 1 10 will print the same number.

The argument may be an expression involving string operators and

functions:

200 PRINT ASC|RIGHTS(T$,1))

Refer to the ASCII Code Table, Appendix C. Note that the ASCII

code for a lower-case letter is equal to that letter's upper-case ASCII

code plus 31. So ASC may be used to convert upper-case values to

5/3

lower-case values - useful in case you have a lint printer with lower-

case capabilities and the proper intcrfacingliardware/sottware).

ASC may also be used to create coding/decoding procedures (see

example at end of this chapter).

CHR$ (expression)

Performs the inverse of the ASC function: returns a one-character

string whose character has the specified ASCII, controller graphics

code. The argument may be any number from to 255, or any variable

expression with a value in that range. Argument must be enclosed in

parentheses.

100 print chrs(35) prints a pound-sign #

Using CHRS, you can even assign quote-marks (normally used as

st ring-deiim iters) to strings. The ASCII code for quotes • is 34.

So AS=CHRS(34) assigns the value " to AS.

100 AS-CHRS(34)
1 10 PRINT'HE SAID. ";AS;"HELLO.";A$

HE SAID, "HELLO."
READY

CHRS may also be used to display any of the 64 graphics characters.

(See Appendix C, Graphics Codes.)

10 CLS
20 FOR 1*129 TO 191

30 PRINT l;CHRS(l),

40 NEXT
30 GOTO 30

(RUN the program to see the various graphics characters.)

Codes 0-3 1 are display control codes. Instead of returning an actual

display character, they return a control character. When the control

character is PRINTed, the function is performed. For example, 23 is the

code for 32 character-per-line format; so the command, PRINT CHRS(23)

converts the display format to 32 characters per line. (Hit CLEAR, or

execute CLS, to return to 64 character-per-line format.)

5/4

FRE (string)

When used with a string variable or string constant as an argument,

returns the amount of string storage space currently available.

Argument must be enclosed in parentheses.

500 PRINT FRE(AS^, FRE(LS). FRE("Z")

Ail return the same value.

The string used has no significance; it is a dummy variable. See

Chapter 4, CLEAR n.

INKEYS
Returns a one-character string determined by an instantaneous key-

board strobe. If no key is pressed during the strobe, a null string

(length zero) is returned. This is a very powerful function because

it lets you input values while the Computer is executing - without

using the BHB3 key. The popular video games which let you

fire at will, guide a moving dot through a maze, play tennis, etc.,

may all be simulated using the INKEYS function (plus a lot of other

program logic, of course).

Characters typed to an INKEYS are not automatically displayed on

the screen.

Because of the short duration of the strobe cycle (on the order of

microseconds) INKEYS is invariably placed inside some sort of

loop, so that the Keyboard is scanned repeatedly.

Example Program:

10 CL5
100 PRINT 9 540.1NKEYS : GOTO 100

RUN the program; notice that the screen remains blank until the

first time you hit a key. The last key hit remains on the screen

until you hit another one. (Whenever you fail to hit a key during a

keyboard strobe, a null string, i.e., "nothing", is PRINTed at 540.

This "nothing" has no effect on the currently displayed character

at 540.)

INKEYS may be used in sequences of loops to allow the user to

build up a longer string.

Example:

90 PRINT "ENTER THREE CHARACTERS"
100 ASMNKEYS ; IF AS- M"THEN t 00 ELSE PRINT AS
1 10 8S"INKEY3 : IF BS«""THEN 1 10 ELSE PRINT BS

120 CS'INKEYS : IF CS'""THEN 120 ELSE PRINT CS:

130 DS=A3*S3+CS

A three-character string DS can now be entered via the keyboard

without using the j^'mj key.

NOTE: The statement if as-" " compares AS trythenull string.

5/5

LEFT$ (string, n)

Returns the first n characters of string. The Arguments must be

enclosed in quotes, string may be a string constant or expression,

and n may be a numeric expression.

Example Program:

10 AS-"T1MOTHY"
20 BS»LEFTS(A5.3)
30 PRINTBS;"-THAT'S SHORT FOR M ;AS

RUN

TIM-THAT'S SHORT FOR TIMOTHY
READY

LEN (string)

Returns the character length of the specified string. The string

variabIe,expresston, or constant must be enclosed in parentheses.

10 AS-""
20 BS-"TOM"
30 PRINT AS.BS.BS+BS
40 PRINT LEN(AS).LEN(B$].L.EN(BS+BS)

TOMTOM

READY
>—

MID$ (string,p,n)

Returns a substring of string with length n and starting at position

p. The string name, length and starting position must be enclosed in

parentheses, string may be a string constant or expression, and n
and p may be numeric expressions or constants. For example,

MlDS(LS.3.l) refers to a one-character string beginning with the 3rd

character of LS.

Example Program:

The first three digits of a local phone number are sometimes called

the "exchange" of the number. This program looks at a complete

phone number (area code, exchange, last four digits) and picks out

the exchange of that number.

10 INPUT "AREA CODE AND NUMBERS (NO HYPHENS, BLEASEJ"
20 EXS-MIDS(PHS, 4, 3)

JO PRINT "NUMBER IS IN THE ";EXS;" EXCHANGE."

5/6

I i ;.= B.JPJIIJIWMIBU

If no argument is specified for the length n, the entire string begin-

ning at position p is returned.

RIGHTS {string, n)

Returns the last n characters of string, string and n must be

enclosed in parentheses, string may be a string constant or variable,

and n may be a numerical constant or variable. If l£N{string} is

less than or equal to n, the entire string is returned.

RIGHTS(STS,4) returns the last A characters of STS.

STR$ {expression)

Converts a numeric expression or constant to a string. The numeric

expression or constant must be enclosed in parentheses. STRS(A),

for example, returns a string equal to the character representation of

the value of A. For example, if A-58.5, then STRS(A) equals the

string ** 58.5". (Note that a leading blank is inserted before "58.5"

to allow for the sign of A). While arithmetic operations may be

performed on A, only string operations and functions may be

performed on the string "SS.S".

PRINT STRS(X) prints X without a trailing blank; PRINT X
prints X with a trailing blank.

Example Program:

40 A-58.5 : »—58.5

20 PRINT STRS(A)
30 PRINT 5TRS[B)
40 PRINT STRS(A+B)
50 PRINT STR5(A)+STR${B)

RUN

58.3

-51.5

58.5-58.5

READY

Note that the leading blank is filled by the minus sign in STR$(B).

STRINGS (n, character or number)

Returns a string composed of n cAaracrer-symbols. For example,

STRINGS*30,"*") returns
»•••—••*•••••••*•••*••*•*••••"

STRINGS is useful in creating graphs, tables, etc.

character can also be a number from 0-255; in this case, it will be

treated as an ASCII, control, or graphics code.

*J7

Example:

STRlNGSlM.WI) returns a string composed of 64 graphics blocks.

VAL tstangi

Performs the inverse oi ihe SIRS N:nci:.m. tr.\. .-. :!ie number
represented by the characters in ;i strin,* argurner.:. l

: or example,

if AS="12" and BS="34" then val(a3* , '."-^931 return* the value

12.34. VAL[as«"E"-b$] returns the vjjue] 2P54, ihjl is 1 2 x 10
1 *

VAL operates a little differently on mixed string* - strings whose
values consist of a number followed by alphanumeric characters.

In such cases, only the leading number is used in determining VAL;
the alphanumeric remainder is ignored.

For example: VAL ("ICO DOLLARS") returns 100.

This can be a handy short-cut in examining addresses, for example.

Example Program:

10 REM "WHAT SIDE OF THE STREET?"
15 REM EVEN=NORTH. ODD =SOUTH
20 INPUT '-ADDRESS: NUMBER AND STREET"; AOS
30 C-INT(VAL(ADS),'2)*2
40 IF C=>VAL|ADS) PRINT "NORTH SIDE": GOTO ZO
50 PRINT "SOUTH SIDE": GOTO 20

RUN the program, entering street addresses like "1015 SEVENTH
AVE".

Coding/Decoding Program for Illustration Only

5 CLS: PRINT CHRS(23)
10 CLEAR 1000
20 INPUT "ENTER MESSAGE": MS
30 FOR K-1 TO LENIMS)
40 TS»MID3(M5. K, I]

60 CO-ASC(TS) + 3: IF CD>255 CD=CD-255
70 NUS =NU5 + CHR3iCD)
80 NEXT
90 PRINT "THE CODED MESSAGE IS"

100 PRINT NUS
110 FOR K> t TO LENfNUSI
120 TS-MID3(NUS. K. 1)

130 CD = ASC(T3)-5: IF CD<0 CD = CD«-255
140 OLD3 =OLD5*CHR5iCD)
130 NEXT
160 PRINT "THE DECODED MESSAGE IS"

t70 PRINT OLDS

RUN the program.

5/8

Lines 30-80 and 1 10-150 demonstrate how you can "peel off" the

characters of a string for examination. Linos 00 and 130 demonstrate

manipulation of ASCII codes.

lustring Subroutine

Using the inlrinvc string functions MIDS and LEN, it's easy to

create a very hindy string-handling subroutine, INSTRING. This

function takes two string arguments and tests to see whether one is

contained in the other. When you are searching for a particular

word, phrase or piece of data in a larger body of text or data,

INSTRING can be very powerful. Here's the subroutine:

999 END THIS IS A PROTECTIVE END-BLOCK
1000 FOR l = 1TO LEN(XS)-LEN{Y3)*1
1010 IF Y$ = MID3(XS.[.LEN(YS)] RETURN
1020 NEXT : l>0 : RETURN

To use the subroutine, first assign the value of the larger string (the

"search area") to XS, and the value of the desired substring to YS.

Then call the subroutine with GOSLB. The subroutine will return a

value of i which tells you the starting position of YS in the larger

string XS:or if YS is not a substring of XS. I is returned with a

value of «ro.

Here's a sample program using the INSTRING subroutine. (Type in

the above lines 999-1020 plus the following.)

5 CLEAR 1000 : CLS
10 INPUT "ENTER THE LONGER STRING" X3
20 INPUT "NOW ENTER THE SHORTER STRING": Y3
30 GOSUB 1000

40 IF 1=0 THEN 70

50 PRINT Y3," IS A SUBSTRING OF ":XS

53 PRINT "STARTING POSITION :";l.

60 PRINT "ENDING POSITION :" :l *LEN|Y5)-1
65 PRINT : PRINT : GOTO 10

70 PRINT Y3;" IS NOT CONTAINED IN ";X3

B0 GOTO 1

RUN the program, entering the string to be searched and then the

desired substring.

5/9

. .^irillLMHin-,'. ', J.-.^,

6/Arrays

An array is simply an ordered list of values.

In LEVEL II these values may be either numbers
or strings, depending on how the array is defined

or typed. Arrays provide a fast and organized way
of handling large amounts of data. To illustrate the

power of arrays, this chapter traces the development
of an array to store checkbook data: check numbers,

dates written, and amounts for each check.

In addition, several matrix manipulation subroutines

are listed at the end of this chapter. These sequences

will let you add, multiply, transpose, and perform
other operations on arrays.

Note: Throughout this chapter, zero-subscripted

elements are generally ignored for the sake of sim-

plicity. But you should remember they are available

and should be used for the most efficient use of
memory. For example, after DIM A(4), array A
contains 5 elements: A(0), A(l), A(2), A(3), A(4).

For background information on 3rrays, see Chapter
4, DIM, and Chapter 1 , "Arrays".

A Check-Book Array

Consider the following table of checkboc.: information:

Check # Date Written Amount

025 1-1-73 10.00

026 1-5-73 39.95

027 1-7-78 23.50

028 1-7-73 149.50

029 1-10-78 4.90

030 1-15-78 12.49

Note that every item in the table may be specified simply by
reference to two numbers: the row number and the column number.
For example, (row 3, column 3) refers to the amount 23.50. Thus
the number pair (3,i) may be called the "subscript address" of the

value 23.50.

Let's set up an array, CK. to correspond to the checkbook informa-

tion table. Since the table contains 6 rows and 3 columns, array CK
will need two dimensions: one for row numbers, and one for column
numbers. We can picture the ;irr:iy like this:

6/1

A(6,l)=030 A(6.2)= 1.1578 A(6,3)=12.49

Notice thai the date information i » recorded in the form mm.ddyy:
where ni/n=month number, dd=dzy of month, and yy = last two

digits of year. Since CSC is a numeric array, we can't store the data

with alpha-numeric characters such as dashes.

Suppose we assign the appropriate values to the array elements.

Unless we have used a DIM statement, the Computer will assume
that our array requires a depth of 10 for each dimension. That is,

the Compute/ will set aside memory locations to hold CK(7,1),

CK(7,2) CK(9,l),CK(9,2)andCK(<),3). In this case, we don't

want to set aside this much space, so we use the DIM statement at

the beginning of our program:

10 DIMCK[6,3) 'SET UP A G BY 3 ARRAY (EXCL. ZERO SUBSCRIPTS)

Now let's add program steps to read the values into the array CK:

20 FOR ROW-1 TO 6

30 FOR COL-1 TO 3

40 READ CK(ROW,COI_)
50 NEXT COL, ROW
90 DATA 025, 1.0178. 10,00

91 DATA 02S, 1.0578, 39.95

92 DATA 027. 1.0778, 23.50

93 DATA 028, 1.0778, 149.50

94 DATA 029, 1.1 078, 4.90

95 DATA 030, 1.1578, 12.49

Now that our array is set up, we can begin taking advantage of its

built-in structure. For example, suppose we want to add up all the

checks written. Add the following lines to the program:

100 FOR ROW-1 TO 6

1 10 SUM-SUM + CK{ROW,3]
120 NEXT
130 PR INT "TOTAL OF CHECKS WRITTEN";
140 PRINT USING"S5»»*.«»";SUM

Now let's add program steps to print oi.;t all checks that were writte

6/2

200 PRINT "SEEKING CHECKS WRITTEN ON WHAT DATE [MM.DDYY)"
210 INPUT DT
Z30 PRINT :?RINT'*ANY CHECKS WRITTEN ARE LISTED BELOW:"
240 PRINT"CHECK #"."AMOUNT" : PRINT
250 FOR ROW-1 TO 6

260 IF CK|ROW.Zl-DT PRINT CK(ROW.l). CK(ROW,3)
270 NEXT

It's easy to generalize our program to handle checkbook information

for all 1 2 months and for years other than 1973.

All we do is increase the size (or "depth") of each dimension as

needed. Let's assume our checkbook includes check numbers 001

through 300, and we want to store the entire checkbook record.

Just make these changes:

10 DIM CK(300.3) 'SET UP A 300 BY 3 ARRAY
20 FOR ROW = 1 TO 300

and add DATA lines for check numbers 001 through 300. You'd
probably want to pack more data onto each DATA line than we did

in the above DATA lines.

And you'd change all the ROW counter final values:

100 FOR ROW=1 TO 300

250 FOR ROW = l TO 300

Other Types of Arrays

Remember, in LEVEL II the number of dimensions an array can

have (and the size or depth of the jrray). is limited only by the

amount of memory available. Also remember that string arrays can

be used. For example, CSlX) would automatically be interpreted as

a string array. And if you use DEFSTR A at the beginning of your

program, any array whose nam; b -jitis with A wjuld also be a string

array. One obvious application for a >tri:iK array would be to store

text material for access by a string manipulation program.

10 CLEAR 1200
20 DIM TXT3110)

would set up a string array capable of storing 1 lines of text.

1200 bytes were CLEARed to allow for 10 sixty-character lines,

plus 600 extra bytes for string manipulation with other string

variables.

6/3

Array/Matrix Manipulation Subroutines

To use ibis subroutine, your main program must supply values for

Nl (rows* and N2 (columns*.

30100 REM MATRIX INPUT SUBROUTINE [2 DIMENSION}
301 10 FOR 1=1 TO Nl
30120 PRINT "INPUT RO'.V";!

30130 FOR J = 1 TO N2
30140 INPUT A(I,J)

30160 NEXT J.l

30170 RETURN

To use this subroutine, your main program must supply values for

Nl (dim* I). N2 (dim*2) and N3(dim=.3).

30200 REM MATRIX READ SUBROUTINE (3 DIMENSION)
30205 REM REQUIRES DATA STMTS.
30210 FOR K = 1 TO N3
30220 FOR 1 = 1 TO Nl
30230 FOR J-1 TO N2
30210 READ A(l.J.K)

30270 NEXT J.I.K

30280 RETURN

Main program supplies values lor Nl, N2, N3, etc.

30300 REM MATRIX ZERO SUBROUTINE (3 DIMENSION}
30310 FOR K = 1 TO N3
30320 FOR J'l TO N2
30330 FOR l-J TO Nl
30340 A(I.J,K) =

30370 NEXT I.J.K

30380 RETURN

Main program supplies values for Nl, \'2, N'3.

30400 REM MATRIX PRINT SUBROUTINE (3 DIMENSION)
30410 FOR K = 1 TO N3
30420 FOR 1=1 TO NJ
30430 FOR J-1 TO N2
30440 PRINT A(I.J.K),

30450 NEXT J:PRINT
30460 NEXT I:PRINT
30470 NEXT K:PR1NT
30480 RETURN

6/4

Main program s-jpplies \ j!u;s Tor Nl. N2. N3.

30500 REM MATRIX INPUT SUBROUTINE |3 DIMENSION)
30510 FOR K = 'l TO N3
30520 PRINT "PAGE".K
30530 FOR 1=1 TO Nl
30540 PRINT "INPUT ROW 1

":!

30550 FOR J=l TO N2
30560 INPUT A(I.J.K)

30570 NEXT J

30580 NEXT I

30590 PRINTNEXT K
30595 RETURN

Multiplication by a Single Variable: Scalar Multiplication (3 Dimensional)

30600 FOR K-t TO N3:'N3=3RD DIMENSION
30610 FORJ-I TO N2:'N2 =2ND DIMENSION (ROWS)
30620 FOR l = T TO N1:*N1-1ST DIMENSION (ROWS)
30630 Bil.J,K)=A[I.J,K)*X

30640 NEXT I

30650 NEXT J

30660 NEXT K
30670 RETURN

Multiplies each element in MATRIX A by X and constructs matrix B

Transposition oi" a Matrix (2 Dimensional)

30700 FOR I - 1 TO Nl
30710 FOR J-1 TO N2
30720 B(J.I)-A(I.J)

30730 NEXT J

30740 NEXT I

30750 RETURN

Transposes matrix A into matrix B

Matrix Addition (3 Dimensional)

30800 FOR K'1 TO N3
30310 FORJ- ITON2
30320 FOR 1=1 TO Nl

30330 cii.j.ki- a|i,j.k]*b;i.j.k)

303JO NEXT f

30830 NEXT J

30850 NEXT K
30870 RETURN

615

Array Element-wise Multiplication (3 Dimensional)

30900 FOR K- 1 TO N3
30910 FOR J=l TO N2
30920 FOR l-I TO N1
30930 C[l,J,Kl-A[I.J,K)*B[I.J.K)

30940 NEXT I

30990 NEXT J

30960 NEXT K

Multiplies each element in A times its corresponding element in E

Matrix Multiplication (2 Dimensional)

40000 FOR 1 = 1 TO N1
400IO FOR J = 1 TO N2
40020 C(I,J) =

40030 FORK=ITON3
40040 C{I.J)-C(1,J) + AU.K)*B|K.I)
40050 NEXTK
40060 NEXT J

40070 NEXT I

A must be an Nl by N3 matrix; B must be an N3 by N2 matrix. The
resultant matrix C will be an Nl by N2 matrix. A, B, and C must be

dimensioned accordingly.

6/f.

7/Arithmetic Functions
LEVEL II BASIC offers a wide variety of intrinsic

("built-in") functions for performing arithmetic and
special operations. The special-operation functions are

described in the next chapter.

All the common math functions described in this

chapter return single-precision values accurate to six

decimal places. ABS, FIX and INT return values

whose precision depends on the precision of the

argument. The conversion functions (C1NT, CDBL,
etc.) return values whose precision depends oil the

particular function. For all the functions, the

argument niust.be enclosed in parentheses. The argu-

ment may be either a numeric variable, expression or

constant.

Functions described in this chapter:

ABS COS INT SGN
ATN CSNG LOO SIN

CDBL EXP RANDOM SOR
CINT FIX UNO TAN

ABS (x)

Returns the absolute value of the argument. ABS(X)aX for X greater

than or equal to zero, and ABS(X)=-X for X less than zero.

100 if abs(x)<ie-6 print "too small"

ATN(jc)

Returns the arctangent (in radians) of the argument; that is, ATN(X)
returns "the angle whose tangent is X". To get arctangent in degrees,

multiply ATN(X) by 57.29578.

tOO Y-ATN(B/C)

CDBL (x)

Returns a double-precision representation of the argument. The value

returned will contain' 17 digits, but only the digits contained in the

argument will be significant.

CDBL may be useful when you want to force an operation to be

done in double-precision, even though the operands are single

precision or even integers. For example CDBL (I7c)/J7c will return a

fraction with 17 digits of precision.

100 FOR l%-1 TO 25 : PRINT t/CDBL(1%), : NEXT

*-'"-'
'
'-' -' ''' !'- L'.J.B".'".!.L !"..'<

j - .

7/1

CINT (jt)

Returns theiargest integer not greater than the-argument. For -

example, CINT (1.5) returns 1;CINT(-I.5) returns -2. For the CINT
function, the argument must be in the range -32768 to + 32767.

CINT might be used to speed up an operation involving single or

double-precision operands without losing the precision of the operands

(assuming you're only interested in an integer result).

100 K*-CINT(X#)*CtNT(Y#)

COS (x)

Returns the cosine of the argument (argument must be in radians).

To obtain the cosine of X when X is in degrees, use COS(X*.0174533).

100 Y-COS(X+3.3)

CSNG (x)

Returns a single-precision representation of the argument. When the

argument is a double-precision value, it is returned as six significant

digits with *'4/5 rounding" in the least significant digit. So
CSNG(. 6666666666666667) is returned as .666667;

CSNG(.3333333333333333) is returned as .333333.

100 PRINT CSNG{A#+B#)

EXP (jc)

Returns the "natural exponential" of X, that is, e
A

inverse of the LOG function, so X=EXP(LOG(X)).

tOO PRINT EXP[-X)

FIX (x)

Returns a truncated representation of the argument. AH digits to

the right of the decimal point are simply chopped off, so the

resultant value is an integer. For non-negative X, FIX(X)=iNT(X).

For negative values of X, FIX(X)=INT(X)+1. For example, F1X(2.2)

returns 2, and FIX(-2.2) returns -2.

100 Y-ABS(A-FIX(A))

This statement gives Y the value of the fractional portion of A.

7/2

Page Was
Blank When
Provided

INT(*)

Returns an integer representation of the argurhent, using the largest

integer that is not grater than the argument. Argument is not

limited to the range -32765 to +32767. INT(2.5) returns 2:

INT(-2.5) returns -3; and [NT(1000101.23) returns 100101.

100 Z=INT{A*I00+. 3)/100

Gives Z the value of A rounded to two decimal places (for non-

negative A).

LOG(*)
Returns the natural logarithm of the argument, that is,

log
s
{argument\ This is the inverse of the EX? function, so

X=LOG(EXP (X)). To find the logarithm of a number to another

base b, use the formula log
b
(X) = Iog

e
(X)/log

e
(b). For example,

LOG(32767)/LOG{2) returns the logarithm to base 2 of 32767.

100 PRINT LOG(3.3*X)

RANDOM
RANDOM is actually a complete statement rather than a function.

It reseeds the random number generator. IT a program uses the RND
function, you may want to put RANDOM at the beginning of the

program. This will ensure that you get an unpredictable sequence of

pseudo-random numbers each time you turn on the Computer,

load the program, and run it.

10 RANDOM
20 C-RNP(6) + RND(6)

80 GOTO 20 'RANDOM NEEDS TO EXECUTE JUST ONCE

RND(jt)

Generates a pseudo-random number using the current pseudo-random

"seed number" ("generated internally and not accessible to user).

RND may be used to produce random numbers between and 1, or

random integers greater than 0, depending on the argument.

RND(O) returns a single-precision value between and 1.

RSDdnteger) returns an integer between 1 and Integer inclusive

(integer must be positive and less than 32768). For example.

RND(55) returns a pseudo-random integer greater than zero and

less than 56. RND(55.5) returns a number in the same range,

because RND uses the INTeger value of the argument.

100 X-RND(2) : ON X GOTO 200,300

7/3

SGN(.t)

The "«^n" lunation : returns -1 for X negative. for X zero, ar.d

+ 1 for X positive.

100 ON SGN(X) + 2 GOTO 200,300,400

SENU)
Returns the sine of the argument (argument must be in radians).

To obtain the sine of X when X is in degrees, use SIN(X*.0I 74533).

100 PRINT S1N(A*B-S)

SQRtt)
Returns the square root of the argument. SQR(X) is the

Xi(l/2), only faster.

100 Y-SQR(X4 2-H^ 2)

TAN(.t)

Returns the tangent of the argument (argument must be in radians).

To obtain the tangent of X when X is in degrees, use

TAN(X\0 174533).

100 Z-TAN(2*A)

NOTE: A great many other functions may be created using the abov,

functions. See Appendix F, "'Derived Functions".

7/4

"*»

8/SpeciaI Features

LEVEL II BASIC offers some unusual functions and

operations that deserve special highlighting. Some may
seem highly specialized; as you learn more about
programming and begin to experiment with machine-

language routines, they will take on more significance.

Other functions in the chapter are of obvious benefit

and will be used often (for example, the graphics

functions). And then there are a couple of features,

INP and OUT, that will be used primarily with the

TRS-80 Expansion Interface.

Functions, statements and operators described in this chapter:

Error-Routine Other Functions
Graphics: Functions: and Statements:

SET ERL INP
RESET ERR MEM
CLS PEEK
POINT Logical Operators:

AND
OR
NOT

POKE
POS
OUT
USR
VARPTR

SKT(x,y)

Turns on the graphics block at the location specified by the

coordinates x and y. For graphics purposes, the Display is divided

up into a 1 28 (horizontal) by 48 (vertical) grid. The .^-coordinates

are numbered from left to right, to 1 27. The ^-coordinates are

numbered from top to bottom, to 47. Therefore the point at

(0,0) is in the extreme upper left of the Display, while the point

at (127,47) is in the extreme lower right corner. See the Video

Display Worksheet in Appendix E.

The arguments x and y may be numeric constants, variables or

expressions. They need not be integer values, because SET(.v,_y)

uses the INTeger portion of-x: andy. SET (x,y) is valid tor:

0< =x < 128
0< my <48

Examples:

100 SET(RND(128)-1,RND(48)-1)

Lights up a random point on the Display.

100 INPUT X.Y: SET(X,Y)

RUN to see where the blocks are.

C :
.

'

"

_...:..
.-"

: .: : ._—zzz ' -
' " " '

S/l

ZHJ

RESET(x,y)

Turrri off a graphics block at the location specified by the coor-

dinates x and y. This function has the same limits and parameter

as SEI(x.y).

ZOO RESET (X.3)

CLS
"Clear-Screen" - turns off all the graphics blocks on the Display

and moves the cursor to the upper left corner. This wipes out alpha-

numeric characters as well as graphics blocks. CLS is very useful

whenever you want to present an attractive Display output.

5 CLS
10 SET(RND{128)-1.RND(48)-I)
20 GOTO 10

POINTS)
Tests whether the specified graphics block is "on" or "off". If the

block is "on" (that is, if it has been SET), then POINT returns a

binary True (-1 in LEVEL II BASIC). If the block is "off, POINT
returns a binary False (0 in LEVEL II BASIC). Typically, the

POINT test is put inside an IF-THEN statement.

100 SET150.28} : IF POINT|50.28) THEN PRINT "ON" ELSE PRINT "OFF"

This line will always print the message, "ON", because POINT(50,28)
will return a binary True, so that execution proceeds to the THEN
clause. If the test failed, POINT would return a binary False, causing

execution to jump to the ELSE statement.

ERL
Returns the line number in which an error has occurred. This function

is primarily used inside an error-handling routine accessed by an
ON ERROR GOTO statement. If no error h;!S occurred when ERL
is called, line number is returned. However, if an error has occurred

since power-up, ERL returns the line number in which the error

occurred. If error occurred in direct mode, 65535 is returned (largest

number representable in two bytes).

8/2

Example Program using ERL
5 ON ERROR GOTO 1000
10 CLEAR 10

20 IN?UT"ENTER YOUR MESSAGE";MS
30 INPUT'NOW ENTER A NUM3ER";N : N=l/
40 REM REST OF PROGRAM BEGINS HERE

1000 IF ERL-20 THEN 1010 ELSE IF ERL =30THEN 1020
1003 ON ERROR GOTO
1010 PRINT "TRY AGA1N-KEEP MESSAGE UNDER 11 CHARACTERS"
1013 RESUME 20

1020 PRINT'TORGOT TO MENTION: NUMBER MUST NOT BE ZERO"
1025 RESUME 30

RUN Che program. Try entering a long message; try entering zero

when the program asks for a number. Note that ERL is used in lint

1000 to determine where the error occurred so that appropriate

action may be taken.

ERR/2+1
Similar to ERL, except ERR returns a value related to the code of the

error rather than the line in which the error occurred. Commonly used

inside an error handling routine accessed by an ON ERROR GOTO
statement. Sire Appendix B, "Error Codes."

ERR/2+1 = true error code

(true error code -1)*2=ERR

Example Program

10 ON ERROR GOTO 1000
20 DIM A[15) : 1 = 1

30 READ A(1
)

40 1 = 1+1 : GOTO 30

50 REM REST OF PROGRAM

100 DATA 2,3,3,7,1,13

999 END
1000 IF ERR/2 + 1 =4 RESUME 50

1010 ON ERROR GOTO

Note line 1 000: 4 is the error code for Out of Data.

8/3

INP(port)
Returns a byte-value t'rom the specified port. The TRS-80 Expansion

Interface is requtretf'to use INP effectively (with user-supplied

peripheral hardware). There are 256 ports, numbered 0-255. For
example

100 PRINT INP(SO)

inputs a byte from port 50 and prints the decimal value of the byte.

MEM
Returns the number of unused and unprotected bytes in memory.
This function may be used in the Command Mode to see how much
space a resident program takes up; or it may be used inside the

program to avert OM (Out of Memory) errors by allocating less string

space, DIMensioning smaller array sizes, etc. MEM requires no
argument.

Example:

100 IF MEM < BO THEN 900
110 DIM A|t5)

Enter the command PRINT MEM (in Command Mode) to find out

the amount of memory not being used to store programs, variables,

strings, stack, or reserved for object-files.

OUT port, value

Ouputs a byte value to the specified port. OUT is not a function

but a statement complete in itself. It requires two arguments

separated by a comma (no parenthesis): the port destination and

the byte value to be sent.

Example:

OUT 290.10

sends the value "10" to port 250. Both arguments are limited to the

range 0-255.

OUT, like INP, becomes useful when you add the TRS-80 Expansion

Interface. See INP.

8/4

PEZK(uddrt'ss)

Returns the value stored .it the specified byte address (in decimal

form). To J--.- this :'v :
-

;o:\ % '""fa - .ed M refer to two -actions of

the Appendix: the Merr.ory Map is.i vou'll krovv where to PEEK)
and the Table of Fui-.ction. ASCII and Graphics Codes (so you'H

know what the v il-.i.-s represent).

If you're using PEEiK to examine object files, you'll also need a

microprocessor instruction set manual (ore is included with the

TRS-80 Editor/Assembler Instruction Manual).

PEEK is valuable for hnkin:- machine language routines with LEVEL
II BASIC programs. The machine language routine can store informa-
tion in a certain memory location, and PEEK may be used inside

your BASIC program to retrieve the information. For example,

A - PEEK (17999)

returns the value stored at location 17999 3nd assigns that value to

the variable A.

Peek may also be used to retrieve information stored with a POKE
statement. L'sin? PEEK and POKE allows you to set up very compact,
byte-oriented storage systems. Refer to the Memory Map in the

Appendix to determine the appropriate locations for this type of

storage. See POKE, L'SR.

POXE address, value

Loads a value into a specified memory location. POKE is not a

function hut a state m.-nt complete in itself. It requires two arguments:
a byte address.- .:..::-. .| form) and a\.ih.i-. fhe value must be

between and 255 inclusive. Refer to the Mcniorv Map in the

Appendix to see which address you'd like to POKE.

To POKE (or PEEKl an address ab-ne 32767. use the following

formula: -1 *ide,ired address - 3"<i71 = POKE or PEEK address,

POKE is useful for LEVEL II graphics. Look at the Video Display

Worksheet in the A;-p.r.d:x. In each of the 102-1 PRINT locations

here are 6 syhJivivns. If we call each PRINT position a byte, then

the smaller boxes are 'nits. We know that ill ere are S bits per byte;

so what hap-vned to the other 2.' One is used to identify the byte

as a graphic or ASCII cede. The other bit is not used. The remaining

6 bus contain either an ASCII, graphics or control code.

w

We cjn use POKE to turn on the entire PRINT position (6 bits) at

one time. When we use SET, only I hit is lurncd on. Therefore POKE
is about 6 times faster tinn SET. The fallowing program demon*-
strates this speed.

10 CLS
20 FOR X-I5360 TO 16333
30 POKE X. 191

40 NEXT
50 GOTO 50

RUN the program to see how fast the screen is "painted" white.

(191 is the code for "jII bits on". 15360 to 1 63S3 are the Video
Display memory addresses.)

Since POKE can he used to store information anywhere in memory,
it is very important when we Jo our graphics to stay in the range
for display locations. If we POKE outside this range, we may store

the byte in a critical place. We could be POKEing into our pro-
gram, or even in worse places like the stack. Indiscriminate POKEing
can be disastrous. You might have to reset or power off and start

over again. Unless you know where you are POKEing— don't.

See PEEK, USR, SET, and Chapter 4, CHRS for background
material.

POSM
Returns a number from to 63 indicating the current cursor

position on the Display. Requires a "dummy argument" (any
numeric expression).

100 PRINT TAB(dO| POS(O)

prints 40 at position 40. (Note that a blank is inserted before the
"4" to accommodate th sign; therefore the "4"

is actually at position
41.) Th; "0" in "POS(0 ' is the dummy argument.

100 PRINT "THESE" TAB(POS[0)*5) "WORDS" TAB(POS(0)*5 J "ARE"
110 PRINT TAB(POS(0)*5) ••EVENLY" TAB(POS(0] + 3) "SPACED"

THESE
READY
>_

8/6

Ajm.iM.Tj

USR (x)

Calls a machine language subroutine and passes the argument to the

subroutine (you may not need it, in which case it is a dummy
argument). Such a subroutine could be loaded from tape, or created

by POKEing microprocessor instructions into the appropriate

memory locations. To use the USR function, you should be familiar

with the machine-language programming (as explained in the TRS-80
Editor/Assembler Instruction Manual or any Z-80 Programming
Manual). Playing around with the USR function can be disastrous to

any programs you may have resident in the TRS-80; so do some
studying before you attempt to use it.

There is only one allowable USR call in LEVEL II BASIC. In LEVEL
II DISC BASIC, there will be up to 10: USRO through USR9.

Example:

100 X-USR(N}

would cause the Computer to branch to the routine beginning at

the location POKEd into the USR(N) addresses 16526-16527.
n is also stored at2687_as a 2-byte integer. Upon return from the

routine, the variable X would be given the value passed back from
the routine. If no value is passed, X is assigned the value of the

argument N.

N must be an integer between -32768 and 32767.

To create a machine language subroutine for access by USR, you
must protect an area in high memory. (See Appendix D, "Memory
Map"). First determine how many bytes your routine will require

Then subtract that number from your Computer's highest Memory
address (depending on whether your TRS-80 has 4K or 1 6K bytes

of memory). The resultant number will be the address where your

protected memory should begin. Turn on the TRS-80, and answer

the MEMORY SIZE question by entering the address where

protected memory should begin. Addresses above that number will

now be reserved for machine language data and routines.

Load the machine language routine, using POKE or via the cassette

interface using the SYSTEM command (see Chapter 2, SYSTEM).
Then, at the point where you want your BASIC program to

branch to the machine language routine, insert a statement which
calls USR(O). For example.

50 PRINT USR(N)

50 A - USR(I%) + B

To pass the argument to the subroutine, the subroutine should
immediately execute a CALL 0A7F(hex) i.e., call 2687(dec).

SSaSE3D -'•'•'"••fFq

8/7

There are two ways to return to your BASIC program from the.

machine-language subroutine:

1) -if you don't wi.sh to pass any vjlues from rir= snl'routine

back to the BASIC program, a machine-lar.;::.:.;;: RET
instruction can be used.

2) To return a value, load the value into the HL r.-e-.ster pair

as a two-byte signed integer and execute a JUMP to

location OAyAlHEX) [2714 (DECll- HL will be returned

as a signed 2-byte integer.

The last thing you need to do is tell your BASIC prolan what

address to branch to in the machine language routine. This two-byte

address must be POKEd into memory locations 16526 and 16527.

POKE the least significant byte into the lower (165261 memory
location.

For example, if your routine begins at 32000: in hexadecimal

thisis7D00. Therefore we POKE 00 (HEX) into 16526, and
7D (HEX) into 16527, Since POKE requires arguments in decimal

form, we use:

POKE 16526.0 ; POKE 16527.208

(208 decimal = 7D hex).

After you have executed the above line, when you use the USR(O)
function, the Computer will branch to the instruction stored at

32000.

Note: locations 16526-16527 contain the address of the Illegal

Function Call routine unless modified by POKE.

USR routines are automatically allocated up to 8 stack levels or

16 bytes (a high and low memory byte for each stack level). If you
need more stack space, you can save the BASIC stack pointer and

set up your own stack. However, this gets complicated; be sure you
know what you're doing. See Chapter 2, SYSTEM, and this chapter,

PEEK, POKE.

VARPTR (variable name)

Returns an address-value which will help you locate where the variable

name and its value are stored in memory. If the variable you specify hj

not been assigned a value, an FC error will occur when this function

is called.

If VARPTRWiirwr variable) returns address K:

Address K contains the least significant byte l LSB) of 2-byte integer K
(two's complement form).

Address K+l contains the most significant byte (MSB) of integer K.

8/3

If VARPTRfsm^te precision variable) returns address K:

(K)* = LSB of value

(K+l) » Next most sig. byte (Next MSB)
(K+2) = MSB
(K+3) = exponent of value

If VARPTR(double precision variable) returns K:

(K) = LSB of value

(K+I) = Next MSB
(K+...) = Next MSB
(K+6) " MSB
(K+7) = exponent of value

IF VARPTR(sm'«s variable) returns K:

(K) = length of string

(K+l) = LSB of string value starting address

(K+2) = MSB of string value starting address

For single and double precision values, the number is stored in

normalized exponential form, so that a decimal is assumed before

the MSB. I 28 is added to the exponent. Furthermore, the high bit

of MSB is used as a sign bit. See examples below.

Examples:

A! = 4 will be stored as follows:

4=10 Binary, normalized as .1E2

So exponent of A is 12S+2 = 130

MSB of A is 10000000;
however, the high bit is changed to zero since the value is positive.

So A! is stored as

Exponent MSB Next MSB LSB
130

A! = -.5 will be stored as

Exponent MSB Next MSB LSB
128 128

* (K) signifies "contents of address K"

8/9

A! = 7 will be

Exponent

131

stored j*

MSB
96

Next MSB LSB

A! = -7:

Exponent
131

MSB
224

Next MSB LSB

Zero is simply stored as a zero-exponent. The other bytes are

insignificant.

Logical Operators

In Chapter 1 we described how AND, OR and NOT can be used with
relational expressions. For example,

100 IF A-C AND NOT |B>40) THEN 60 ELSE 50

AND, OR and NOT can also be used for bit manipulation, bitwise
comparisons, and Boolean operations. In this section, we will

explain how such operations can be implemented using LEVEL II

BASIC. However, we will not try to explain Boolean algebra,

decimai-to-binary conversions, binary arithmetic, etc. If you need
to leam about these subjects, Radio Shack's Understanding Digital

Computers (Catalog Number 62-2027) would be a good place to
start.

AND, OR and NOT convert their arguments to six teen-bit, signed

two's-complement integers in the range -32768 to +32767. They
then perform the specified logical operation on them and return a

result within the same range. If the arguments are not in this range,
an "FC" error results.

The operations are performed in bitwise fashion; this means that
each bit of the result is obtained by examining the bit in the same
position for each argument.

The following truth tables show the logical relationship between
bits:

OPERATOR ARGUMENT 1 ARGUMENT 2

AND 1 1

1

1

OPERATOR ARGUMENT 1 ARGUMENT 2

OR 1 1

1

ri
1

Bag
8/10

OPERATOR ARGUMENT RESULT

NOT I

1

EXAMPLES:

(Tn all or" ire exam pies i-elo v, leading zeroes on binary numbers are

not shown.)

63 AND 16=16 Sinee 63 equals binary I 1 1 1 1 1 and 16 equals binarv

100C0. tile result of the AND is binary 10000 or 16.

15 AND 14-14 15 equals binary 1111. and 14 equals binary 1110,

so 15 and 14equals binary 1110 or 14.

-1 AND 8=8 -1 equals binary 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 and 8 equals

binary 1000. so the result is binary 1000 or 8

decimal.

4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the

result is binary because none of the bits in either

argument match to give a 1 bit in the result.

4 OR 2=6 Binary 100 OR'd with binary 10 equals binary I 10,

or 6 decimal.

10 OR 10=10 Biliary 1010 OR'd with binary 1010 equals binary

1010. or 10 decimal.

-1 OR -2=-l Binarv 1 1 I 1 1 1 1 I 1 1 1 1 1 1 I 1 (-1) OR'd with binary

1111! Ill 1 1 111 I 10 (-2) equals binary

1 111 II 11111111 ll.or-1.

NOT0=-l The bit complement of binary to 16 places is six-

teen ores I II I II 111 llllll I Dor -I. Also NOT
-1=0.

NOTX NOT X is equal to -(X>]). This is be.ause [o form

tile .ist.'.'n ''I! r.vo's complement of [he number,

you :..:s.- tile "I! (one's) complement .i:id add one.

NOT l=-2 [lie .'i;;::i bit complement of 1 is

111', II I I 1 I 111 I iO. which :

. equal to -(1*11 or

Atypical use of Hub-twist -per nors is to test bits set in Ihe TRS-SO's

inport ports which reflect tile state of some external device. This

requires Ihe TRS-SO Exp.m.ion Interface.

S/ll

Bit position 7 is tl'.e most significant bit o!" a byU\ while position is

the least significant.

For instance, suppose bit i of I port 5 is v.iv.Ti the door to R.?o:ti

X is closed, and 1 if the door is open. The following program will

print "Intruder Alert" if the door is opened:

10 IF INP(5)AND 2 THEN PRINT "INTRUDER ALERT". GO TO 1G0

20 GOTO 10

See Chapter 1 , "Logical Operators".

8/12

9/Ediiing
LEVEL I users undoubtedly spent lots of time retyping.

long prcgr-im lines, .ili because of a typo, or maybe just

to make j minor change. Once a line had been entered,

there was no way to alter the line - without starting

all over and retyping it.

LEVEL IPs editing features eliminate much of this

extra work. In fact, it's so easy to alter program lines,

you'll probably be able to do much more experiment-
ing with multi-statement lines, complex expressions,

Commands, subcommands, and special function keys described i

this chapter:

EDIT L fiD

USUI] * nc

»Space-Bar l " 5C

B .. a nice

SHIFT i
E

EDIT line number
This command puts you in the Edit Mode. You must specify which
line you wish to edit, in one of two ways:

EDIT line-numher BSH3 Lets you edit the specified line.

If line number is not in use,

or an FC error occurs

edit. Lets you edit the current pro-

gram line -- last line entered or

altered or in which an error has

occurred.

For example, type in and H^.ij-J the following line:

100 FOR I - 1 TO 10 STEP. 3 : PRINT l.l|2. U 3 : NEXT

This line will be used in exercising all the Edit subcommands de-

scribed below.

Now type EDIT, and hit GSE3 The Computer will display:

'Vi

You are row in the Edit Mode and may begin editing line ICO.

ENTER key

Hitting HZHU while in the Edit Mod.- cau-.e, the Computer to

record all the changes you've made r.i ;»ny) in the current line, and
returns you to- the Command Mcde.

jzSpace-bar

In the Edit Mode, hitting the Space-bar moves the cursor over one

space to the right and displays any character stored in the preceding

position. For example, using line I DO entered above, put the

Computer in the Edit Mode so the Display shows:

Now hit the Space-Bar. The cursor will move over one space, and
the first character oi ;he program line will be displayed. If this

character was a blank, then a blank will be displayed. Hit the Space-

Bar until you reach the first non-blank character:

100 F_

is displayed. To move over more than one space at a time, hit the

desired number of spaces first, and then hit the space-bar. For
example, enter 5 and hit Space-bar, and the dupljy will siiow some-

thing like this (may vary depending on how many blanks you
inserted in the line):

100 FOR l=_

Now type 8 and hit the Space-bar. The cursor will move over

8 spaces to the right, and 8 more characters will be displayed.

n -"-(Backspace)

Moves the cursor to the left by r. v ices. If r.o :r.;:v.her n s >pe.:!;ed,

the cursor moves back !:._ space. W hen the c.irt.ir :v\)\-..-s to the left,

all characters in its "pain" are erased from the Jiip'.jj , but they are

not deleted from the program line. For example, a-samir.g yjii'v.-

used nSpace-Bar so that the Display shows:

100 FOR 1^1 TO 10 _

type 8 and hit the -• key. The Display will show something like this:

100 FOR l-_ (will vary depending on number of blanks m
your line 100)

9/2

ff'iyi
.

. m.j..-„^i... -. ;

-.—* •>-!•• -i "g'L'.j jl.

SHIFT i

Hitting SHIFT and I keys together effects an escape from any of the

Insert subcommands listed below: X, I and H. After escaping from

an Insert 'subcommand, you'll still be in the Edit Mode, and the cursor

will remain in its current position. (Hitting EZH33 is another way
to exit these Insert subcommands).

L (List Line)

When the Computer is in the Edit Mode, and is not currently

executing one of the subcommands below, hitting L causes the

remainder of the program line to be displayed. The cursor drops

down to the next line Of the Display, reprints the current line

number, and moves to the first position of the line. Tor example,

when the Display shows

too _

hit L (without hitting BEH33 kcy* and Une 10° wil1 be displayed;

IOO FOR I- 1 TO 10 STEP .9 : PRINT), I « 1, l|) i NEXT
100 _

This lets you look at the line in its current form while you're doing

the editing.

X (End of Line and Insert)

Causes the rest of the current line to be displayed, moves cursor to

end of line, and puts Computer in the Insert subcommand mode so

you can add material to the end of the line. For example, using

line 100, when the Display shows

hit X (without hitting E35S3) and the entire line will be dis-

played; notice that the cursor now follows the last character on the

line:

100 FOR 1-1 TO 10 STEP .5 : PRINT I, lit, lil : NEXT-

We can now add another statement to the line, or delete material

from the line by using the -» key. For example, type

: print-done" at the end of the line. Now hit I77iH:1 .

If you now type LIST 100, the Display should show something

like this:

100 FOR 1*1 TO 10 STEP .5 : PRINT I, 1*2, I 43 : NEXT : PRINT"DONE"

s-ana-g . a ?. >..aaasaama
9/3

I (Insert)

Allows you-to insert mjterial beginning at the current cursor position

on the line. (Hitting -*will actually d elete material from the line in

this mode.) For example, type and Nvi J^Tl thg EDIT 100 command,
then use the Space Bar to move over to the decimal point in line 100.

The Display will show:

100 FOR 1-1 TO 10 STEP ._

Suppose you want to change the increment from .5to .25. Hit the I

key (don't hit H tM<3;|) and the Computer will now lei you insert

materia! at the current position. Now hit 2 so the Display shows:

100 FOR l-I TO 10 STEP .2_

You've made the necessary change, so hit SHIFT i to escape from
the Insert Subcommand. Now hit L key to display remainder of line

and move cursor back to the beginning of the line:

100 FOR t-1 TO 10 STEP .23 : PRINT I. 1*2. I i 3 : NEXT : PRINT "DONE"
100 _

You can also exit the Insert subcommand and save all changes by
hitting HEH33 This W'U return you to Command mode.

A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and cancels

editing changes already made. For example, if you have added, deleted,

or changed something in a line, and you wish ro go back to the

beginning of the line and cancel the changes already made: first hit

SHIFT 4 (to escape from any subcommand you may be executing);

then hit A. (The cursor will drop down to the next line, display the

line number and move to the first program character.

£ (Save Changes and Exit)

Causes Computer to end editing and save all changes made. You
must be in Edit Mode, not executing any subcommand, when you
hit E to end editing.

Q (Cancel and Exit)

Tells Computer to end editing and cancel all changes maJj in the

current editing session. If you've decided not to change the iine, type

Q to cancel changes and leave Edit Mode.

9/4

Ecssa

H (Hack and Insert)

Tells Computer to delete remainder of line and lets you insert

material at the current cursor position. Hitting -*will actually delete

a character from the line in this mode. For example, using line 100
listed above, enter the Edit Mode and space over to the last state-

ment, PRINT"DONE". Suppose you wish to delete this statement

and insert an END statement. Display will show:

100 FOR I- 1 TO tO STEP.25 : PRINT I. 1*2. 14 3 : NEXT :_

Now type H and then type END. Hit H'Wdil key. List the line:

100 FOR l-I TO 10: STEP .25- PRINT !. 1*2, 1*3 : NEXT : END

should be displayed.

nl> (Delete)

Tells Computer to delete the specified number n characters to the

right of the cursor. The deleted characters will be enclosed in

exclamation marks to show you which characters were affected.

For example, using line 100, space over to the PRINT command
statement:

100 FOR 1-1 TO 10 : STEP .25 : _

Now type 1 9D. This tells the Computer to delete 1 9 characters to

the right of the cursor. The Display should show something like this:

100 FOR 1-1 TO 10 ; STEP.25 : IPRENT I, I 4 2, 1*3 :l_

When you list the complete line, you'll see that the PRINT statement

has been deleted.

«C (Change)

Tells the Computer to let you change the specified number of charac-

ters beginning at the current cursor position. If you type C without a

preceding number, the Computer assumes you want to change one
character. When you have entered n number of characters, the

Computer returns you to the Edit Mode (so you're not in the «C
Subcommand). For example, using line 100, suppose you want to

change the final value of the FOR-NEXT loop, from "10" to "15".

In the Edit Mode, space over to just before the "0" in "10".

100 FOR 1*1 TO i_

Now type C. Computer will assume you want to change just one
character. Type 5, then hit L. When you list the line, you'll see that

the change has been made.

100 FOR 1*1 TO 15 STEP .25 ; NEXT : END

would be the current line if you've followed the editing sequence in

this chapter.
'-' " OBS '-• -'- -' •"'•

-J--

9/5

BE

nSc (Search)

Tells the Computer to search for the nth occurrence of the character

c, and move the cursor to that position. If you don't specify a value

for n, the Computer will search for the first occurrence of the speci-

fied character. If character c is not found, cursor goes to the end of

the line. Note: The Computer only searches through characters to

the right of the cursor.

For example, using the current form of line 100, type EDIT 100

(EZH33) and then hit 2S: . This tells the Computer to search

for the second occurrence of the colon character. Display should

show:

100 FOR l-l TO 15 STEP .23 : NEXT-

You may now execute one of the subcommands beginning at the

current cursor position. For exampie, suppose you want to add the

counter variable after the NEXT statement. Type I to enter the

Insert subcommand, then type the variable name, I. That's all you

want to insert, so hit SHIFT to escape from the Insert subcom-

mand. The next time you list the line, it should appear as:

100 FOR 1-1 TO 15 STEP .23 : NEXT 1: END

nKc (Search and "Kill")

Tells the Computer to delete all characters up to the nth occurrence

of character c, and move the cursor to that position. For example,

using the current version of line 1 CO, suppose we want t o delete the

entire line up to the END statement. Type EDIT 100 (('fjTffiil),

and then type 2K: . This tells the Computer to delete all characters

up to the 2nd occurrence of the colon. Display should show:

100 IFOR 1-1 TO 15 STEP .25 : NEXT H_

The second colon still needs to be deleted, so type D . The Display

will now show:

100 IFOR 1-1 TO 15 STEP .25 : NEXT lll:l_

Now hit QCHUl ar>d lype LIST i °° (BSX33)

Line 100 should look something like this:

100 END

9/6

»t.^.:.«. :-.:.. •
: .

-
.
- i.

-•. '.—i.»..'i-rra

10/Expansion Interface

An Expansion Interface is available for the TRS-80
LEVEL II Computer. This interface will allow the use

of additional Input/Output devices. There is also a

provision for adding RAM memory. The Interface will

allow four major additions to the TRS-80:
1. An additional cassette deck
2. A TRS-80 Line Printer

3. Up to four Mini-Disks

4. Up to 48K bytes ofRAM Memory
(32K in the Expansion Interface)

These devices are available from your Radio Shack
store or dealer. To set up the Expansion Interface and

any of the external devices, see the Expansion Interface

instructions.

When the Expansion Interface is hooked up to the TRS-80, the Com-
puter assumes that a Mini-Disk is interfaced. The Mini Disk will allow

the use of additional commands and statements listed later. Even if

you don't have a Mini Disk, the Computer will assume you do (because

of the p-resen.e* of the Disk Controller) and will try to input special

instructions from the Disk Controller. Therefore, to use the Interface

without a Mini Disk, hold down the BREAK key as you turn on the

TRS-80. This will override the mini-disk mode and allow normal
LEVEL II operation. Whenever you need to press the Reset button,

you must also hold down the BREAK key.

Dual Cassettes

The use of two cassettes will allow a much more efficient and
convenient manner of updating data stored on tape. For example,

if you have payroll data stored on tape, the information can be
read in one item at a time from cassette * 1 then changed or added
and written out on cassette #2, one item at a time. The routine might

look like this:

10 INPUT #-1 .A.B.C.D

20 PRINT "MAKE CORRECTIONS HERE: RETYPE LINE"
30 INPUT A.B.C.D
40 PRINT "THE LIME NOW READS:" A.B.C.D
SO PRINT "STORING ON TAPE #2..."

60 PRINT •-!, A.B.C.D

70 GOTO 10

This is a very simple application; however, very powerful routines

can be constructed to allow Input and output of data using two tapes

simultaneously.

ggSSSSBS } --• SEC
10/1

See Chapter 3, PRINT.

Codes

Several codas are used to control the output of the line printer. The
codes and their functions are listed below. The CHRS function is

used to call up these function codes. For example:

PRINT CHRS (10)

will generate a line feed.

CODE FUNCTION
10 line feed with carriage return

1

1

line feed with carriage return

1

2

Move carriage to top of form (page)

1

3

carriage return

NOTE: At the end of a line, a line feed is automatically generated

unless a semi-colon is used at the end of the PRINT statement.

The line printer will print 6 lines per inch and 66 lines per page. If

this format is not suitable, the number of lines per page can be
changed by POKEing the new number of lines into memory
location 16424.

Example:

POKE 16424. 40

This instructs the Line Printer to print 40 lines per page.

Mini-Disks - (LEVEL II DISK BASIC)

The TRS-80 Mini Disk System is a small version of a floppy disk. The
disk allows vast file storage space and rrluch quicker access time than

you get with tape storage. Disc will contain about 80,000 bytes

of free space for files. Each additional disk will have 89,600 bytes of
file space. The disk system has its own =et of commands which allow

manipulations of files and expanded abilities in file use. The TRS-80
Mini Disk System allows both sequential and random access. The
disks will also allow use of several additional BASIC commands and
functions:

Commands:

CLOSE
FIELD
GET
KILL

LSET PUT
NAME RSET
OPEN MERGE
PRINT LOAD

SAVE

10/3

I/O Functions

CVD LOF
CVI MKD5
CVS MKI$
EOF MKSS
LOC OSKF

Additions to LEVEL II

Ten USR calls - USR0 through INSTR (performs function of
USR9 INSTRING subroutine

*H (hex constants) - see Chapter 4)

&o (octal constants) times (Date and 24-Hr.

DEFUSR Real-Time Clock.)

line input DEF FN * L,ser Defined Functions)

M I DS (on left side of equation)

For explanation of these commandj functions, see the TRS-80
Disk Operating System Manual.

Expansion of RAM Memory

The TRS-80 Expansion Interface has provisions for adding extra
RAM memory. This is done by adding RAM memory chips. You
can add up to 32,768 additional bytes of memory. For price

information and installation, see your Radio Shack store or dealer.

10/4

11/Saving Time and Space

Most LEVEL II programs are taster and lake up less

memory space than their LEVEL I counterparts.

But even with its inherently more efficient features,

LEVEL II can be further streamlined by following

a few simple guidelines when constructing your

program.

Saving Memory Space

1) When your program is operating properly, delete all unnecessary

REM statements from your running version.

2) Do not use unnecessary spaces between statements, operators,

etc.

3) When possible, use multiple-statement program lines (with a

colon between each two statements). Each time you enter a new line

number it costs you 5 bytes.

4) Use integer variables whenever possible, for example,

FOR 1% = 1 TO 10

Integers take only two bytes. Single precision takes 7 and double

precision takes 1 1 bytes.

5) Using subroutines will save program space if the operation is

called from different places several times. If a routine is always called

from the same place, use unconditional branches (GOTO's). Each
active GOSUB takes 6 bytes: a GOTO takes none at Run time.

6) Structure your calculations so as to use as few parentheses as

possible (refer to Chapter 1 , "Arithmetic Operators"). It takes

4 bytes to process parentheses. And since these operations inside

parentheses are done first, the result of each parenthetical

expression must be stored (this takes 12 bytes).

7) Dimension arrays sparingly. When you set up a matrix, the

Computer reserves 1 1 subscript addresses for each DIMension, even

if the space is not filled. Use the zero subscripted elements, since

they are always available.

8) Use DEF statements when you will be working with values

other than single precision (strings, integers and double precision).

A DEF statement takes 6 bytes but this is made up for fairly quickly

since you don't need to use type declaration characters with the

variable names.

li/i

mmzmszsETz

Speeding Up Execution

The speed at which a program is processed will defend on the com-
plexity of the operations and the number of instructions. In most
simple programs, speed will not be a factor. It will seem as though
the answer h returned the moment you enter RUN. However,
as you begin writing longer and more intricate programs, speed will

become a significant factor. Here are some suggestions to guide you
in designing speedier programs.

1) Delete all unnecessary lines in the program (REM statements,

etc.)

2). Combine multi-statement program lines when practical.

3) Use variables rather than constants in operations (very

important). Your TRS-80 normally operates using floating decimal
point values. It takes a lot less time to access a variable than to con-
vert a constant to floating point representation^ For example: if you
will use * a lot in a program, define it as a variable (PI-3. 141 59)
and use the variable (PI) in the operations.

4) Use POKE graphics. This can speed up your graphics displays

by a factor of 6.

5) Define the most commonly used variables first. When a variable

is defined it is located at the top of the variable table. The second
will be just below that. When variables are accessed, the table will be
searched to find the variable. Therefore, you will save time by
locating frequently used variables at the top of the table (by defining
them first). The Computer will not have to look as far to find them.

6) Use integer variables, especially in FOR-NEXT loops, when
possible. This is most important of all.

11/2

ET=

A/Level II Summary

Special Characters and Abbreviatons

Command Mode

SHIFT -*

SHIFT *

CLEAR

Return carriage and interpret command

Cursor backspace and delete last character typed

Cursor to beginning of logical line; erase line

Linefeed

Statement delimiter; use between statements on same logical line

Move cursor to next tab stop. Tab stops are at positions

0. S, 16, 24, 32,40. 48, and 56.

Convert display to 32 characters per line

Clear Display and convert to 64 characters per line

Execute Mode

SHIFT fe

BREAK

BZSH3

Pause in execution; freeze display during LIST

Stop execution

Interpret data entered from Keyboard with INPUT statement

Use in place or PRINT.

Use in place of :REM

"Current line"; use in place of line number with LIST. EDIT, etc.

A/1

Type Declaration Characters

Character Type

S String as. zzs

% Integer Al'i. SUM*

! Single-Precision bi, Nit

• Double-Precision A*, l/l#

D Double-Precision (exponential notation) 1.23456789D-IZ

E Single-Precision (exponential notation) I.23456E+30

Arithmetic Operators

+ add - subtract * multiply

4 exponentiate (e.g., 2 i 3 * 8)

String Operator

+ concatenate (string together)

Relational Operators

Symbol meaning in numeric expressions in string expressions

< is less than precedes

is greater than follows

is equal to equals

< or < is less than or equal to precedes or equals

> =* or => is greater than or equal to follows or equals

<> or >< does not equal does not equal

BE
A/2

Order of Operations (operators on same line have same precedence)

4 f Exponentiation)

-tNsgation)

Relation;;! op.Taton
NOT
AND
OR

Commands

Command Function Examples

AUTO mir..rin Turn on automatic auto
line numbering AUTO 10

i-esiiiming witli auto 5.5

in in. using inure- AUTO..I0
ment of tin.

CLEAR Set numeric van- CLEAR
ahles to zero.

strings to null.

CLEAR n S :me as CLEAR CLEAR 500

Kit also >ets ISlJc CLEAR MEM/4
ii t?> tes for > trine*.

CONT Continue after CONT
BREAK or STOP
in execution.

DELETE mm-nn Delete program DELETE too

lines from line DELETE 10-50

mm to line tin. delete .

EDIT mm Enter Edit Mode EDIT too

for line mm. See edit .

FJii Mode 5ur>-

'.0!iir:ianils hclmv.

LIST mm-nn List all program LIST

lines from mm to LIST 30-60

nn. LIST 30-

L1ST -90

LIST .

A/i

NEW Delete entire pro- NEW
gram and reset .ill

etc.

RUN mm Execute program run
beginning .it io-.v.-st run 55

numbered line or

mm if specified.

SYSTEM Enter Monitor See Chapter 2

Mode for loading

of machine-language

file from cassette.

TROFF Turn off Trace troff

TRON Turn on Trace tron

Edit Mode Subcommands and Function Keys

Subcommand/Function Key Function

ENTER End editing and return to Command Mode.

SHIFT i Escape from subcommand and remain in Edit Mode.

nSpace-Bar Move cursor n spaces to right.

n -* Move cursors spaces to left.

L List remainder of program line and return to beginning

of line.

X List remainder of program line, move cursor to end of
line, and start Insert subcommand.

I Insert the following sequence of characters at current

cursor position; use Escape to exit this subcommand.

A Cancel changes and return cursor to beginning of line.

E End editing, save all changes and return to Command
Mode.

End editing, cancel all changes made and return to

Command Mode.

E=2

A/4


~~~; **"";•~~"
~?r!!3

H

nD

«c

nSc

ofchai ictetv. use Escape to exil this subcommand.

Delete specific.) ii'i:;ikr ol" eluncters >i ;veinn!:i,i jt

lu !':;;: t :u: : ;or position.

Cruras (or replace! the specified number ot characters

/i usine the ne\t /i characters entered.

Move cursor to xth occurrence (.si' character c. counting

from current cursor position.

Deleft* ill dKimcteis from current cursor position up to

'ith occurrence of character c, counting from current

cursor position.

Input/Output Statements

Function Examples

Output to Display PRINT A3
the- v :! ['j--' of a-/i. print X'3
I'.xv riy be ;i print- , d

e;;p-es-.. ; ,:orcon-

.:ii. or j list of

Comr".i s.-rves .is j PRINT 1.2.3.4

F'isINT modifier. PRINT "l". "Z"
C l :-:S Clr.o: 1.) PRINT 1,.Z

i-co -ct --.er.-.-s PRINT X ;" 'ANSWER"
! i'A '!'

i'''"!i- PRINT X
: Y Z

i.-- .TtS .1 .p it-." PRINT ",1N?,V:R IS":

\/5



mssEss:^.

PRINT USING stringiexp

INPUT "message'\variable

PRINT #-

1

INPUT #-

1

DATA item list

READ variable list

PRINT modifier; print • 540,"CENTER"
begin PRINTing at PfWNT v n*3,x*3
specified display

position nJ

Print modifier:

moves cursor to

specified Display

position n (expres-

sion).

PRINT format

specifier: output
exp in form speci-

fied by string field

(see below).

Print message*(if

any) and await

input from Key-

board.

Output to

Cassette #1.

Input from

Cassette #1.

Hold data for access oatA 22.33.1 1,1.2345

by READ state- data "hall'VSmith'V'OOE"
ment.

PRINT TABlN) N

PRINT USING A3;X
PRINT USING "#.#-;Y*Z

INPUT"ENTER NAME":AS
INPUT-VALUE"; X
INPUT'ENTER NUMBERS"
INPUT A.B.C.D*

PRINT *—1.A.B.C.DS

READ A.A1.A2.A3
READ AS.BS.Cf.D

Assign value(s) to

the specified vari-

able(s), starting

with current DATA
element.

Reset DATA point- RESTORE
er to first item in

first DATA state-

ment.

ajiMP.mtMftjj

A/6



Field Specifiers for PRINT USING statements

Numeric Character Example

Numeric field (one •»«
digit p tT »1.

Decimal point »*.
position.

Print loading or + *.•

trailing sign (plus •.<

for positive num- — #.i

bers. minus for ».<

negative numbers).

Print trailing sign »»<
only if value print-

ed is negative.

Fill leading blanks •••

with asterisk.

Place dollar sign SS=*

immediately to left

of leading digit.

Dollars sign to left "S
of leading digit and
fill leading blanks

with asterisks.

**** Exponential format,'

with one significant

digit to left of

decimal.

•Hit

String Character Example

Single character. 1

String with length

equal to 2 plus

number of spaces

between % symbols.

A/7

~—

*



Program Statements

S' atement Examples

C]'ype Definition)

DEFDBL letter list or range

DEFINT letter list or range

DEFSNG letter list or range

DEFSTR letter list or range

Define as double- defdbl j

precision all DEFDBL X.Y.A
variables beginning DEFDBL A-E.J

with specified

letter, letters or

range of Liters.

Define as integer defint a
till va.ri.iHes b^in- defint c.e.g

ning with specified defint a-k
letter, letters or

range of letters.

DEFSNG L
DEFSNG A-L, Z
DEFSNG P.R.A-K

Define as single-

precision all vari-

ables beginning

with specified

letter, letters or

range of letters.

Define as string all defstr a.b.c

variables beginning defstr s.x-z

with specified let- defstr m
ter, letters or

range of letters.

(Assignment and Allocation)

CLEAR n

DIM arrayfdim ml dimxk)

Set aside specified clear 750
number of bytes clear mem/io
n for string storage, clear o

Allocate storage for DIM a(z,3)
& -dimensional array dim ai ( i 5). A2(i5)
vith the

size per dimension:

dim*l . dim* '.. . .,

etc. DIM may be

followed by j list

of arrays separated

by commas.

dim b;x-2].c(j.k)

DIM T(3

A/8



Statement Function Examples

LET variable=expression

(Sequence of Execution)

END

Assign value of LET AS-"CH ARLIE"
expression to Lt£T B1=C1
variable. LET is LET A%-l#
optional in LEVEL
II BASIC.

End execution, 99 end
return to Command
Mode.

GOTO line-number

GOSUB line-number

Stop execution, too stop
print Break message

with current line

number. User may
continue with

CONT.

Branch to specified goto too
line-number.

Branch to sub- gosub 3000
routine beginning at

hue-number.

ON exp GOTO line*! ft'ne**

ON exp GOSUB Iine*I..

Branch to statement return
following last—

executed GOSUB.

ON K*l GOTO TOO. 200. 300Evaluate expres-

sion, if INTlexpl
equals one of the

numbers I through

k. branch to the

appropriate line

number. Otherwise

go to next state-

ment

..line*k Same as ON ... on j GOSU3 330.7000
GOTO except

branch is to sub-

routine beginning

at line*!
,
!inr*2,

. . . ottinemk,

depending on

A/')



increment .">: one is

used. &icC:U|Mcr4.

'SEW variable Close FOR-NEXT next
loop. l'jr:s''-L- ;:uv NEXT I

re omitted I'o NEXT I.J.K

close nested loops,

a vjriaHe lUl ;iuy be

used. See Chapter 4.

ERROR (code) Simulate the error ERROR (U)
specified b\ code

(see Error Coje

Table).

ON ERROR GOTO line-number If an error occurs in on error goto 999

subsequent program
lines, branch to

error routine begin-

ning Jt line-number.

RESUME n Return from error RESUME
routine to hue RESUME
specified by n. [f n RESUME 100

is zero or not sped- RESUME next
lied, return to state-

ment coui.ruir:''

error. Ifm-
"NhXT". return to

statement following

error-statement.

RANDOM Reseeds random random

R I'M ark indicator; REM a is altitude

A/;o



(Tests — Conditional Statements)

IF exp-1 THEN iijtimeni-} ELSE smmncnt-2
Tests >'Xp--I: IF A = THEN PRINT "ZERO"
it rr-.ic. I'XCC'jte ELSE PRINT ''NOT zero-
srjtcmenl I then

jump to next pro-

ar.i:n line I unless

SljtCTTlCnt ! WJS Li

GOTO).

Iff*/?-/ is False.

jump directly to

ELSE statement

and execute sub-

sequent statements.

(Graphics Statements)

CLS Clear Video cls
Display.

RESET(.v.y) Turn off the graph- reset[B + b.m)
ics block with hori-

zontal coordinate x
ar.J verticil coordi-

nate v. 0<=X <i:s
a-.d 6<«Y<4«

SET (jr.yl Turn on the srapli- set(a*2,b*c)
icsMock specified

by coordinates r

and >'. Same argu-

ment limits as

RESET.

(Special Statements)

POKE location. value Load value into poke 15635. 3d

memory location poke i7770.a*-n

I both arguments in

decimal form)
0<= .j/i«< = :5?.

OUT ptirt.vtilue Send u/nc to por; out 255, 10

(both argument* out 55. a
between I) and :>5

A/ II



String Functions

Function Operation Examples

ASC(string) Returns ASCII code ot" fust character asc(bs)
in string argument. ASC("H")

CHRS(u»fe exp) Returns a one-character string defined chrj(34)
by code. If code specifies a control CHR»(|)
function, that function is activated.

FRE(smng) Returns amount of memory available FRE(AS)
for string storage Argument is a

dummy variable.

INKEYS Strobes Keyboard and returns a one- INKEYS
character string corresponding to key
pressed during strobe (null string if

no key is pressed).

LES{itring) Returns length of string (zero for null LEN(a$*bs)
String). LEN("HOURS")

LEFTS(string.n) Returns first n characters of string. LEFTS(AS.i)
LEFTS(L1S+CS.8)
LEFTS(AS,M + L)

MlDS(string,p,n.) Returns substring of string with length MlDS(MS.5,2)
n and starting at position p in string, mids[ms+bs,p,l— 1

1

RIGHTS(string.n) Returns last n characters of string. rightS(nas,7)
R1GHTS(AB$,M2)

STRS(mmteric exp) STRS( 1.2345)

Returns a string representation of the STRS|A+B*2)
evaluated argument.

STRINGS(fl,c7i«/-) Returns a sequence strings(30.
STRINGS(25. "A")of n char symbols

using first character STRING$(5,CS)
of char.

VAUstring) Returns a numeric value corresponding val( ,T ,*as+". ,,+C»)
to a numeric-valued siring. val|as+b5)

VALIG1SI

*string may be a string variable, expression, or constant.

Bggjn3 -.I
J I...W;-, . ^ . . ... —-- . ,t - ^ jjp^un .

_

w .J i
. »M '

,

'ff»T"*

A/12



Arithmetic Functions*

Function Opera lion (unless noted otherwise.

-l."E*JlS<=>t'.VJ<*l.7E+JS)

Examples

ABSff.rp)

ATN(p.vpl

CDBU.-.TP)

CINT(erp)

COS(exp)

CSHGlexp)

EXPttxp)

FIXff.v/i)

INT(f.vp)

LOG(c-Tp)

RNDIO)

RSDtexp)

SGri(exp)

Returns absoluti

Returns arctangent in radians.

ABS(L*.7]
ABS(SINfX))

ATN(2.7)
ATN{A*3)

Returns double-precision representa-

tion 01" exp.

Returns largest integer not greater

than exp. Limits:

-3:7fiS<=r.v/i<+J2"'tj8.

Returns the cosine of exp; assumes

exp is in radians.

Returns single-precision representation,

with 5 4 rounding in least significant

decimal when exp is double-precision.

Returns the natural exponential,

t
t-xp ,{[x?i :.xp).

Returns the integer equivalent to

truncated exp (fractional part of exp
is chopped off).

Returns largest integer not greater

Re'.urns natural logarithm (base e)

oi exp. Limits: exp must be positive.

Returns a pseudo-random number
between 0.000001 and 0.«')'M9 l)

inclusive.

Return* a pseudo-random number
between 1 .ind INTuwpl inclusive.

Limits: 1 < =..'v/;< *27bS.

Returns -I for negative exp: for

riTOi'vii; !-l lor positive exp.

ienc-v:ili: \l \pr>.i.»i or constant.

CDBL(A)
CDBL|AM/3»)

C[NT(A = *B)

COS(2*A)
COSlA/57. 29578)

CSNG(A =
)

CSNG|.33-B»)

EXP(34.5)

EXPlA*a'C-1 )

LOG(1 2.33)

LOG|A| B + B)

RiMD[40)

RND|A'B)

SGN(A*B'3)
SGN(COS(X)l

A/ 13



SlN(«p) Retui. ,s i':e sine ol'j.vp; jiiun

is in ii.li.iriv

""*
5IN|30/57. 23578)

SQR(exp) Retu ,:s !;..ire rout ofsvp. Li

«pij;.,,; '-; r.oa-p.j-jji:*e.

mils: SQRiA'A -a-a)

TAN(exp) Retui:ii :'.:: tangent of «Mrp; jytunus TANIX)
TAN(XV017J533)

Special Functions

Function Operation and Limits Examples

ERL Returns 1m: number of curren t error. ERL

ERR Returns a Mine related to curt ent error ERR/2+1
code (if error has occurred). ERR =

(error code-l)*2. Also: t,ERR/2)+l =

error code.

INP(porf) Inputs and returns the current value inp(55)
from the specified port. Both argument
and result ire in the range to 255
inclusive.

MEM Returns Total unused and unprotected MEM
bytes in memory.

?BEK(tocation) Returns value stored in [lie specified peek( 15370)
memory byte. location must be a valid

memory -idress in decimal form dee
Memory Map in Appendix D).

POINT (x.y)

USR(rt)

MnEZLCZS

Checks the graphics block specified by

horizontal coordinate .v and vertical

coordinate v, It" block is '"on", returns a

True ( i I. if block is "utT". returns a

False 1 (J 1 Limits: 0<=x <l ls.Q< =y <.4A.

Returns j .-.umber mdi.atme the cur- pos(O)
rent cur^T position, n.e jr^urr.cnt
"0"

is a J.miny variable.

Brandies to machine lanyuaye -.Lib- USR(O)
routine. For LEVEL II BASIC, n must
equal 0. Sec Chapter 3.

Returns '.': address 'Ahere the specified varptr'a$!
variables r.ame, value, and po.nter are VAHPTHlNl)
stored. ..ir must be a valid variable n.ime.

Returns if var has not been aliened a

value.

A/14



"Blr.'."Jlj.''.'.

LEVEL II Reserved Words*

® FIX OUT
ABS FOR PEEK
AND FRE POINT
ASC GET POKE
ATN GOSUB POS
CDBL GOTO PRINT
CHRS IF PUT
CINT INKEYS RANDOM
CLEAR INP READ
CLOSE INPUT REM
CLS 1NSTR RESET
CMD INT RESTORE
CONT KILL RESUME
COS LEFTS RETURN
CSNG LET RIGHTS
CVD LSET RND
CVI LEN SAVE
CVS LINE SET
DATA LIST SGN
DEFDBL LOAD SIN
DEFFN LOC SQR
DEF1NT LOF STEP
DEFSNG LOG STOP
DEFUSR MEM STRINGS
DEFSTR MERGE STRJ
DELETE MIDS TAB
DIM MKDS TAN
EDIT MKIS THEN
ELSE MKSS TIMES
END NAME TROFF
ERL NEW TRON
ERR NEXT USING
ERROR NOT USR
EXP ON VAL
FIELD OPEN VARPTR

* Many of these words have no function in LEVEL II BASIC; they are

reserved for use in LEVEL II DISK BASIC. None of these words can

be used inside a variable name.

zasss, EB
A/15



Program Limits and Memory Overhead

Ranges

Integers -327d8 to +32767 inclusive

Single Precision - 1 .70 1 4 1 1 E+38 to + 1 . 70 1 4 1 1 E+38 inclusive

Double Precision - 1.70141 1S34544556E+38 to +1.70141 I S34544556E+38 inclusive

String Range: L'p to 255 characters

Line Numbers Allowed: to 65529 inclusive

Program Line Length: Up to 255 characters

Memory Overhead

Program lines require 5 bytes minimum, as follows:

Line Number - 2 bytes

Line Pointer - 2 bytes

Carriage Return - 1 byte

In addition, each reserved word, operator, variable name, spdcial character and constant

character requires one byte.

Dynamic (RUN-time) Memory Allocation

Integer variables: 5 bytes each

(2 for value, 3 for variable name)

Single-precision variables: 7 bytes each

(4 for value, 3 for variable name)

Double-precision variables: 1 1 bytes each

(8 for value, 3 for variable name)

String variables: 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, 1 for each character)

Array variables: 1 2 bytes minimum
(3 for variable name, 2 for size, 1 for number of dimensions,

2 for each dimension, and 2, 3, 4 or 8 [depending on array type]

for each element in the array)

Each active FOR-NEXT loop requires 16 bytes.

Each active (non-returned) GOSUB requires 6 bytes.

Each level of parentheses requires 4 bytes plus 1 2 bytes for each temporary value.

*"

A/16



B/LEYEL II Error Codes

ABBREVIATION ERROR

NF NEXT without FOR

SN* Syntax error

RG Return without GOSL'B

OD Out of data

FC Illegal function call

OV Overflow

OM Out of memory

UL Undefined line

9 BS Subscript out of range

10 DD Redimensioned array

1 1 ,0 Division by «ro

12 ID Illegal direct

13 TM Type mismatch

14 OS Out of strips space

15 LS String too long

lb ST String formula too complex

17 CN Can't continue

18 NR NO RESUME

19 RW RFSl 'ME without error

20 UE Unprintable error

21 MO Missing operand

22 FD Bad file ..lata

23 Lj Di.s hamch'-is"

b/i



ara -',:,
'

Explanation of Error Messages

NF NEXT without FOR: NEXT is used without a matching FOR statement. This error

may also occur if NEXT variable statements are reversed in a nested loop.

SN Syntax Error: This usually is the result of incorrect punctuation, open parenthesis,

an illegal character of a mis-spelled command.

RG RETURN without GOSUB: A RETURN statement was encountered before a

matching GOSUB was executed.

OD Out of Data. A READ or INPUT # statement was executed with insufficient data

available. DATA statement may have been left out or all data may have been read

from tape or DATA.

FC Illegal Function Call: An attempt was made to execute an operation using an illegal

parameter. Examples: square root of a negative argument, negative matrix dimension,

negative or zero LOG arguments, etc. Or USR call without first POKEing the entry

point

OV Overflow: A value input or derived is too large or small for the computer to handle.

OM Out of Memory: All available memory has been used or reserved. This may occur

with very targe matrix dimensions, nested branches such as GOTO, GOSUB, and

FOR-NEXT Loops.

UL Undefined Line: An attempt was made to refer or branch to a non-existent line.

BS Subscript out of Range: An attempt was made to assign a matrix element with a

subscript beyond the DIMensioned range.

DD Redimensioned Array: An attempt was made to DiMension a matrix which had

previously been dimensioned by DIM or by default statements. It is a good idea to

put all dimension statements at the beginning of a program.

/Q Division by Zero: An attempt was made to use a value of zero In the denominator.

ID Illegal Direct: The use. of INPUT as a direct command.

TM Type Mismatch: An attempt was made to assign a non-string variable to a string or

vice-versa.

OS Out of String Space: The amount of string space allocated was exceeded.

LS String Too Long: A string variable was assigned a string value which exceeded 255

characters in length.

ST String Formula Too Complex: A string operation was too complex to handle. Break

up the operation into shorter steps.

B/2



ana ->-mag

CN Can't Continue: A CONT was issued at a point where no continuable program exists,

e.g., after program was ENDed or EDITed.

NR No RESUME: End of program reached in error-trapping mode.

RW RESUME without ERROR: A RESUME was encountered before ON ERROR
GOTO was executed.

UE Unprintable Error: An attempt was made to generate an error using an ERROR
statement with an invalid code.

MO Missing Operand: An operation was attempted without providing one of the required

operands.

FD Bad File Data: Data input from an externa! source (i.e., tape) was not correct or was

in improper sequence, etc.

L3 DISK BASIC only: An attempt was made to use a statement, function or command
which is available only when the TRS-80 Mini Disk is connected via the Expansion

Interface.

nn



C/Control, Graphics, and ASCII Codes

Control Codes: 1-31

Codt Function

0-7 None

8 Backspaces and erases

current character

9 None

10-13 Carriage returns

14 Turns on cursor

15 Turns off cursor

it:: None

23 Converts to 32 character

mode

24 Backspace -*Cursor

25 Advance *- Cursor

26 Downward t linefeed

27 Upward 4 linefeed

2S Hgne. return cursor to

airplay pusitioniO.O)

29 Move cursor to beeinning
o! !:ne

30 Erases to the end of live lint

31 Clear to the end of the frau

ri\



ASCII Character Codes 32-128

Code Giaracter

76 L
77 M
7H 'I

79 a
Ml p

31 .-

s: R
83 S

:-,l T
«s U
86 V
87 IV

K'i>. X
VI Y
90 Z
'1! V or [

92 t

'} -*

94 •"

95 -

96-127 lower case ft

codes 6+95
128 Space

32
33
34
35
36
37

38

39
40
41

42
43
44
45
46
47
48

49
50
51

52

53

54

55

36

5 7

58

59
f.O

61

62
63
64
65

66
67
68
69
70
71

72

73

74

75

i

1

2

3

4

5

6
7

:<•

>

58

A
B

C
D
1;

F
C
II

I

J

Graphics Codes 129-191

You can examine these codes using;

TO FOR X - 129 TO 19!

20 PRINT X;:PR1NT CHHSIX),
30 NEXT

Space Compression Codes:

192 TO 255

Code Function

192-255 Tabs for TO 63

spaces, respectively

en



D/LEVEL II TRS-30 MEMORY MAP
ADDRESS

HEXIDEC1MAL

14302

14303

14304

14305

14308

14312

14316

16383

16384

16402

16405

37DE
37DF
37EO
37E1

37E4
37E8
37EC

3FFF
4000

4012

4015

LEVEL II BASIC ROM

RESERVED

COMMUNICATION STATL'S ADDRESS
COMMUNICATION DATA ADDRESS
INTERRUPT LATCH ADDRESS
DISK DRIVE SELECT LATCH ADDRESS
CASSETTE SELECT LATCH ADDRESS
LINE PRINTER ADDRESS
FLOPPY DISK CONTROLLER ADDRESS

TRS-30 KEYBOARD

TRS-^OCRT

VIDEO MEMORY

[
|
LEVEL II BASIC FIXED RAM |

VECTORS IRST'S 1 THROUGH ")

KEYBOARD DEVICE CONTROL BLOCK

DCB 0- DC B TYPE
1 = DRIVER ADDRESS

* 2 = DRIVER ADDRESS3 =

• 5=0
+ 6 = 'K'

+ 7«T
VIDEO DISPLAY CONTROL BLOCK
DCB * 0- DCB TYPE r

+ I
- DRIVER ADDRESS (LSB.1

+ 2 = DRIVER ADDRESS (MSB)
t 3 « CURSOR IMS N ll.SIll

4 -CURSOR POSNiMSIi)
«" 5 -CURSOR CHARACTER
+ 6^'D 1

7 -

LINE PRINTER CONTROL BLOCK
DCB 0- DCB TYPE

* !
- DRIVER ADDRESS (I SB)

* 2 -DRIVER ADDRESS (MSB)

.INI S PAM

.INI COl'M



16429 4o:d

M-16.3

16464

16466.

I646S

-16476 -

16478

16S70

17127

404F
4050
405:
4054
405C
405E

4IE6

42E7

20479 (4K)

32767 (16K)

4FFF(4K)
7FFF(16K)

F DC INTERRUPT VECTOR
COMMUNICATIONS INTERRUPT VECTOR

— 25 MSEC HEARTBEAT INTERRLTT
[" RESERVED

LEVEL II BASIC R.UI

ALWAYS ZERO

I PROGRAM TEXT

* SIMPLEVAR1ABLES

I ARRAYS

FREE MEMORY

t STACK

t STRING SPACE

SPACE RESERVED FOR MACHINE LANGUAGE
ROUTINES TO BE ACCESSED FROM BASIC -

IF MEMORY SIZE SET

END OF ACTUAL MEMORY

D/2





F/Derived Functions

Function Expressed in Terms of Level II Basic Functions

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPOBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC

SINE
INVERSE HYPERBOLIC

COSINE
INVERSE HYPERBOLIC

TANGENT
INVERSE HYPERBOLIC

SECANT
INVERSE HYPERBOLIC

COSECANT
INVERSE HYPERBOLIC

COTANGENT

SEC(X)- 1/COSIX)
CSC(X)- 1/SIN(X)

COTfX)= I.'TAN(X)

ARCSIN(X) - ATN(X/SQR(-X*X+1))
ARCCOS<X) = -ATN(X,'SQR(-X*X+1»+1.570S
ARCSEC(X) - ATNISORI X'X-I ))+( SGN(X)-1 )• 1 .5708

ARCCSQ X) = ATN( 1 /SQRI X«X-1 ))+(SCN(X)-l)* 1 .5708

ARCCOT(X)= -ATN(X)+1.5708
SINH(X) = (EXP(X)-EXP(-X)V2
COSH(X) = (EXP(X>^EXP(-Xl)/2
TANTK X) - - EXP(-X)/( EXP( X)+EXP(- X)* 2+

1

SECHi X) = 2,'l EXP(X)+EXP(-X)>
CSCH(X) - 2/lEXP(X)-EXP(-X»
COTHIX) - EXP(-X)/(EXP(X)-EXP(-X))*2-t 1

ARGSINH(X) = LOG(X+SQR(X*X+D)

ARCCOSH(X)= L0G(X+S0R(X - X-1I)

ARGTANH(X)= LOG((l+X)/< 1-X)V2

ARGSECH(X)- L0G((SQR(-X*X+l)+!)/X)

ARGCSCH(X)^ LOG((SGN(X)-SQR(X'X+n+l),'X)

ARGCOTH(X)- LOC«X+l)/(X-I)V2

F/l



H/User Programs

Space-Ship Lander

This challenging pr;" " .:v. ':: ymi qrnuijte ,1 hnJirtg 'Jequence on any

of four planetary r. :.'.:<: I-'j-th. \U" en. Mjrs, j::J the ..steroid Ve-.ta.

Before each ! Q-scen-j ".^irr," interval, yovi are given the following

information:

liler-ed Ti:r; l-e.or.ds'l

Altitude (:::.w,;| 1:«l

Velocity (::: >:re'-.T;'hour -

relative amount indicates motion
as i\ from planetary body)

:l j-.-il !.,!.. :rams>

Using this inform..!.'

sccondi For :x ; n: :

the !0-s-.'sooJ -!.„-.

0-100 Ks/kc (over :

't'oVbiSl'in

: a "bum e

; irval. Bui

the "C

lo^rjns of fuel/

v,-j 1::0 Ke ;!..;rir.¥

; be in the range
" fjree to become

too 'ircst.

)

Hinls

- V negative velc -.
: : • you burn ed too tr :.;i fuel '"J are

moving away (•

- Fuel burns mi)
'

"i i

"

'

l lry body
15.5 K4 «c)

- As you :onj-r

fofo -

- Landing cond;t ich plarH^jl
- Tlie up irro* 1

Remember Co . ..-,V:
'•.'..'.

Good lu-k, C.':r.:":.i"

11C M :-|T> M. "



20? PRINT* 0, "ELAPSED ALTITUDE VELOCITY REGAINING IISPUT FUEL".
206 PRINT* 64. "TIME <KH) <.'KN/HR> FUEL BURN:<kG/S£C
210 PRINT* 128+0 , Tl; TftB<10> N2; TflB<24> 62, TA6..2S> 114, TABC32) . ; INPUT F
23* IF F=B GOTO 239
260 IF FO OR F>100 GOTO 220
270 T - N4/F : IF T<19 THEN B4-T
280 m - N4 - <F*B4>
283 V1-B3
286 Tl-Tl+84
230 85 » <G2+ (<G2 * N3V<A3 * -2>>> - <<F * G3)/(A3 + M4»
293 B3 - B2 + <B3 * B4i
29a N3-N3
300 N3 » N3+ <<<B3 + B2> / Al> * B4>
303 B2*B3
307 IF N3<8 GOTO 450
310 IF N4 <= GOTO 400 ; GOTO 210
312 G-G+64 : IF Q * 128 > 960 THEN Q-832
315 GOTO .203-

320 PRINT " --» ILLEGAL FUEL BURN - DUmVt—TRY AGAIN <0 TO 160>" : GOTO 210
400 V2 SQR <B2£2 + N3 + G2 * 3630> : PRINT "OUT OF FUEL AT"; Tl ;"SECONDS"
410 V3 - M£<V2> + 10006 / 3660
420 Tl - Tl LOG <<V3 * N3 * lOOOO) / Gl>
420 GOTO 1000
430 72 - SOR <A6S <N3 / <26 * B5>>> + (26 * B3> + VI : GOTO 1O00
460 T1-T1-(10-B4)
300 Gl - 980. 7 : A3 = 6371 : fi*-"£ARTH" ; G0T0143
600 Gl 162 : A3 » 1733 : A*-"HOON" : GOTO 143
700 Gl - 374 ; A3 - 3280 : A*-"MARS" : GOTO 143
800 Gl - 17 5 A5 - 195 A*-"VESTA' : GOTO 145
1000 PRINT : PRINT "VOU HAVE ".

1010 IF V2<29 PRINT "LAMBED" GOTO 1100
1020 IF V2<lu0 PRINT "CRASHED -

: GOTO 1140
1030 IF V2C239 PRINT "BEEN OBLITURATED" : GOTO 5000
1040 IF V2<3000 PRINT "MACE A NEW CRATER" . GOTO 5000
1030 IF V2>4999 PRINT "BORED B HOLE INTO THE PLANET" . GOTO 5000
1100 IF V2<1 PRINT "NICE TOUCH—VERV GOOD" : GOTO 5000
1110 IF V2<3 PRINT "NOT TOO BAO" GOTO 3000
1120 PRINT "KIND OF ROUGH" GOTO 30Q0
1140 IF V2C29 PRINT "YOU WILL HOT BE ABLE TO TAKE OFF" : GOTO 5009
1150 IF V2<43 PRINT "VOU ARE INJURED, THE LANDER IS ON FIRE" : GOTO 5300
1160 PRINT "THERE ARE NO SURVIVORS"
3009 PRINT "VELOCITY AT IMPACT * * *" TABC40), R6S<V2) . "KM/HR"
3010 PRINT "ELAPSED TIME ******" TABC40>; Tl , "SECONDS"
3920 END

Customer Information

This program allows you (or your customers) to store information in

a file for future reference. It stores Name, Address and Phone Number;
the file can be recalled, modified, etc., by specifying the desired

action using the "Menu" (Table of Commands).

as

H/2



This would be a handy way to create a mailing/phone list.

18 CLEftR 1888 :CLS :DIM N*<58> :DIH ASC39) :DIM P*<58>
28 CLS :PRINT8 19, "* * MENU * *" :PRINT :PRIHT
36 PRINT "TO BUILD fl FILE TVPE 1
40 PRINT "TO SEE THE ENTIRE FILE TVPE 2
58 PRINT "TO SEE AN INDIVIDUAL NflME TVPE 3

68 PRINT "TO MAKE CORRECTIONS TVPE 4

78 PRINT "TO SAVE THE CURRENT FILE ON TAPE TVPE 5
08 PRINT "TO INPUT fl FILE FROM TAPE TVPE 6
98 INPUT Q :0N GOTO 188.288,388,488.588,688
188 INPUT-WHEN READV, NIT ENTER (TO CLOSE THE FILE TVPE 9999 FOR NAME>"*X
118 FOR 1-1 TO 58 :CLS :PRINT"ENTER VOUR NAME <LflST FIRST, NO COMMAS PLEASE)
112 PRINT-THEN HIT THE <ENTER' KEV" J : INPUT N*<I>

115 IF N*CI>«"9999" THEN Pl-I :GOT015e
128 INPUT-ENTER VOUR ADDRESS <N0 COMMAS)"; fl*<I>

138 INPUT-ENTER VOUR PHONE • "; P*CI)
135 IF FRE<X*> < 188 G0T0158
148 NEXT
158 PRINT-FILE CLOSED —" :INPUT"TO SEE THE MENU, HIT ENTER"! X
168 Q0T028
288 as :F0R 1-1 TO PI :PRINT N*<I>, A*<I>, P«I) :NEXT

218 INPUT"TO SEE THE MENU, HIT ENTER"; X :QOT028

388 CLS ; INPUT"EHT£R THE NflKE, LflST FIRST <N0 COMMAS)"* N$
318 FOR 1-1 TO PI :IF H*<I)-f» THEN338
315 NEXT
328 PRINT-NAME NOT IN FILE" :G0T0348

338 PRINT N*<I>, fl*<I>, P*<I)
348 PRINT :PRINT-F0R flNOTHER NflME TVPE 1. OTHERWISE 8"j : INPUT X
358 IF X-l G0T0389 ELSE20
488 as :PRINT-ENTER THE NflME FOR THE LINE VOU HISH TO CHANGE (NO COMMRS)"
485 INPUT N*
418 FOR 1-1 TO PI IF N*-N*<I> GOT0438
415 NEXT
428 PRINT-NflME NOT IN FILE" :G0T0468

433 PRINT-ENTER THE CORRECTED INFO. : NflME, ADDRESS. PHONE"
448 INPUT N*<I>. A*<I>, P»<I)

458 PRINT-THE LINE NOW READS :" :PRINT N*CI>. A*<I>, P*CI>
468 INPUT-FOR ANOThER CORRECTION TVPE 1. OTHERWISE 8"; X
479 IF X-l G0T0439
488 GOT028
588 CLS : INPUT "MAKE PREPARATIONS FOR CASSETTE, WHEN REBDV HIT ENTER"* X
318 PRINT-COPVING. . .

"

528 PRINT #-1, PI
338 FOR I»l TO PI PRINT #-1, N$<I). A*<I>, P*<I> :NEXT

548 PRINT"COMPLETE — NOTE Tfl^ LOCATION"

558 INPUT-TO SEE THE MENU, HIT ENTER"; X :G0T028

600 as :INPUT HUHEN READV, HIT ENTER"; X
618 PRINT"INPUTIMS . .

.

628 INPUT 8-4, PI
638 FOR I«l TO PI :INPUT #-1, N*<I), A*<I), P*<I> :NEXT
640 PRINT'COMPLETE": INPUT-TO SEE MENU, HIT ENTER") X :G0T028

:!'.l'!"-V,.'.l
. SS - !'"! J" ---I*

1

H/3



Triangle Computation '>i!n (jr:^)!iics

"TKis pfo^mii ili^i^.r. ;..; t!v .:;.- :' :r~;;;! ;":.::_::.-:>'.:> >x ;\\ is

graphics. It\j :r-; vay to:--.»^;:;jt.- :;.- .:—::;. .::' ;:;.:— :^

(iniyht I-e i;o>>J i\>r i",i ji-.-M.ii col :. L.icr.ti). i
'«.•;;: ,.p jrr.v.v | =

[

in this printout. I

te CIS
leo p»:nt"this F=-:.".--'i ^l^.lhte? *--e "E-* :f a tfii'-nole

113 PR-INT "GIVEN, j ~-r:'ETE-S -M) :-.-L,S 7-E ^ir', -LE "0 SCA^E
123 PRINTPRINT"F"_F 3 i!:-i T.FE SSS. FCv 2 S::ES f-.rO 1 Ar.GLE TVPE

:
SAS,

139 PRINT'FCR 1 SIDE AND 2 AIJr-LES TVPE ASA
149 "(PUT At IF Af'SAS" GO':i.B:03

158 if s*--mSm- :-;:.. 5400
2>*3 'SSS

219 PRINT'ENTER 3 'SICES. (LONGEST SIDE FIRST;.

229 INPUT LI. L2. L2

225 IF L2TH OR L3:-L1 PRINT "• * - LONGEST FISST PLEASE . . .

- FP.INT ^
239 S-ai*L2»L3>/2
235 IF S •> LI FRI.'.T " - * - NOT A TRM-M]LE * * *" PRINT : GOTO 210
249 V3 - 2 * SGR< S - (S-L2) - <S-L1> * <S~L3>) / LI

2?0 ft - V3/L2 :R - ATNC ft / SGRC-fl + A»l>)
266 X3 - CQS<fl) * L2

270 HP = ai * V3> /2

289 G0T&5C-9

3'?9 'SAS

319 PRINT'ENTER 2 SIDES FIND 1 ANGLE: AB, AC. THETft: (LARGEST SIDE FIRST)

329 INPUT LI. L2. T

325 T - <T * 3 14159) / loO
329 V3 - L2 • SIN(T)
249 X2 = COSCT) * L2
353 RR = CL1 * V3) /2

368 GOT0508
400 'ASA

41$ PRINT-ENTEP 2 ANGLES AMD 1 SIDE THETA1. THETA2, ft8:

420 INPUT Tl, 12. L2

425 Tl - <T1 * 3 1-1159) / 130 : T2 - CT2 * 2. 14159) / lt'O

430 Y3 = L2 * SI.'HTi)

440 Bl = CCS<T1) - L2
450 B2 - V3 / TANCT2)

460 LI * Bl > &2 X3 = El
470 ftR « (L2 * V3> / 2

525 IF F=6 GuTC^lO
530 S1-V3 ,' y'i '-2-Y2 .

532 :f i'iT'-:» - :i --v.

533 :f inT' :•?.> * :.- l_i

534 if >:: :o TKEMi>?
535 if >:::l.i taenia
537 IF X:«L2 Tl-£M,'.J0

540 FOR V=2a "0 LI • L>

55? fcp y.'-i t.j -; :f_t

560 FOR >:=:C TO LI it

599 PRINTS 64 + ir-T>.'V3

n/

1



mUMaax^M^.^i^Ki.ikiuiiiM.iasi.imanaiTMmMmmnmtnmmmmm

688 PRINT8 <X3 * 28> / 2, "C <"i X3 * F I
", "; VS • F I» I

618 PRINT* 832. '«i£A -"J H! I - SO. UNITS' I

628 PRINTS 896. -THE VOLUME OF THE SOLID CREATED BV REVOLVING THE TRIHNOLE "I

625 PRINT-BBOUT THE X (WIS <LINE RB> -"J VT; "CUBIC UNITS'i

638 PRINT8 768. »" i : INPUT "TO RUN fWfllN. TYPE 1"» B6 : IF 961 THEN18 -

648 STOP : 00TO18
788 IF LK188 THEN F-2 : G0T0758
718 IF LK158 THEN F<*3 : G0T0758
728 IF LK288 THEN FM : O0TO758
738 IF Ll<258 THEN F-5 : 0OT0758
748 PRINT "SORRY, SCflLE TOO LflROE TO 8E DRBUN" I : F-6 : G0T0318
758 Ll-UVF : Vl-Vl/F ; Y2-Y2/F : Y3-V3/F : Xl-Xl/F : X2-X2/F : X3-X3/F
768 RETURN
1888 FOR Y-5 TO Y3*5 : SETCXJ • 2 28 , V) : NEXT : G0T0348
1188 FOR V-5 TO Y3*S : SET<28 , Y> : NEXT : 00T0548
1199 IF X3M27 S0SUB788
1288 FOR X-Li TO X3 : SET<X • 2 « 28 . Y3 + <S2 w <U-X> +5» : NEXT : Q0TO548
1299 IF X3 < -18 O0SUB78B
1388 FOR X-X3 TO 8 : SET<X • 2 28 . Y3* <S1 • (»-X> +S» : NEXT : 00T0548

Targef'Practice

This program uses the INKEYS function to simulate one of the

popular "video games". Notice how few lines are required. This

program could easily be "dressed up" - let the user choose a

Fast Target, Slow Target; keep score, print special messages, etc.

To change the speed of the target, change line 40 as follows:

instead of "RNEK 10)/10", use "RND(0)*Sr -

. For a slow-moving

target, let SI be small (less than 1); for a faster target, let SI be
greater than I . S 1 should not exceed 1 .5 or the target will advance

to the next line.

1 CLS:PRINT : PRINT CHRJC23) i "HIT '2- KEV TO BIN LEFT.
2 PRINT "HIT V KEV TO flIH RIGHT. "

3 PRINT "HIT SPBCE Bflft TO FIRE. "

4 FOR I • 1 TO 5008 NEXT

18 CLS : CB-928 : 1-1 : PRINT 8 Cfl, "•"
> : PRINT 8 fSi, ««•"!

28 F-8
38 IF I >- 15 PRINT 8 124, " "; : 1-1

48 PRINT 9 64 I • 4, • "; : I-I+RMX18V18 : PRINTS 64+1*4, -

58 IF F-8 THEN 288
68 RESET<MX, HV> : MX-HX-HO : MV-rTY-8 : IF MX<-8 OR HX>»127 THEN28
78 IF HV>2 SET<WX,HV> : GOTO 38
88 IF R8S< I*8-HX»4 THEN 28
98 FOR J-l TO 6 : PRINTS 64»4-I, "«*»•";

: FOR K-l TO 58 : NEXT
95 PRINTS 64*4*1, " ": FOR K-l TO 58 : NEXT K, J
188 G0T018
288 VS-INKEV*
283 IF F-l STOP
218 IF V»0"Z" THEN 258

ts
H/5



220 IF Cft < 922 THEN 38
228 PRINTS Cfl- ' V : Cft-Cfi-1-r- GOTO"280
259 IF V*OV THEN 288
268 IF Cfl>934 THEN 29
279 PRINT* Cfi,

M
"i : Cfl*Cfl+l

289 PRINTS Cfl, "*",
: G0T039

399 IF V*<>" THEN 33
319 F-l : MD-923-CF) : MV-46 : MX-64-2+MD : SET<MX,HY> : G0T029
311 END

Ready-Aim-Fire (Bouncing Dot Revisited)

Remember the LEVEL I Bouncing Dot program? This program takes

that idea and turns it into a game for one or more players by means
of the INKEYS function. The object is to enter the correct 3-digit

combination that will cause your missile to destroy the bouncing

dot. (The 3-digit number corresponds to the X-axis of the display

and therefore should be in the range 001 to 1 26 - and be sure to

enter leading zeros for 1- or 2-digit numbers.)

The Computer always takes the first shot; then it's Player Number
l*s turn.

5 DIM Ni(4>
6 CLS : INPUT "ENTER THE NO. OF PLflVERS"* XI : PRINT"ENTER"; XI ; "1ST NflMES :"

7 FOR XI-1 TO XI : INPUT N*<XI> : NEXT : XI-1
19 as
29 FOR M-9 TO 127 : SET<M.9> : SET<M.4?> : NEXT
39 FOR M-9 TO 47 : SET<8,H> : SET<127.M> : NEXT
33 FOR X-l TO 121 STEP 19 : RESET(X,9> : NEXT
49 RANDOM : V= RHD(49> +1 : X> RND(118> +4

59 D-l : Q-l : Z=64
69 RESET <Z,V-D> : RESET <X- Q * 4, 24>
79 SET<Z,V> : SET<X,24> : GOSUB 599
99 V-V+D : X-X+Q
99 IF X-123 OR X=4 THEN GOSUB 799
198 IF V-47 THEN 129
195 IF V-9 G0SU8 999
118 IF V O -i Oft X <> -1 THEN 69
129 V* V- 2 * D : D- -0 : GOTO 69
599 IF X-Z OR X»0+Z OR X-2 * 0*2 OR X-3 * 0+2 OR X«0 * 4+2 THEN IF V-24 G0SU8 £99
519 IF V-23 OR V-24 OR V25 THEN IF X-Z GOSUS 699
529 RETURN
699 X-l
618 FOR Z-l TO 59 : PRINTS 559, "HIT !•!"; : NEXT
628 FOR Z-l TO 25 : PRINTS 558. i : NEXT
639 X-X+i : IF X<5 GOTO 619
649 GOTO 2989
789 X-X-2 * Q : 0- -0 : RETURN
999 T* INKEV* ; fl# ""

: B* - ""
: C$ - "

1999 fit* INKEV* : IF LEN<R*> - 9 THEN 1999
1995 PRINT9 9, fl*t

—ngnmmnx z g szssssa szssamgESEga ea gz:

H/6



SI

IF LEN<B*>=0 THEN 1816

IF LEN<C*>-0 THEN 1020

ft*+B*+C* : Z*VflL<X*> : IF ZM.26 GOTO 1100

PRINTS 70, "TOO LARGE, TRV flGRIN"
"

: Z-l : GOTO 1030

1010 B*= INKEV*
1015 PRINTI? 1, Bt:

1020 C*" IMKEV*
1025 PRINTS 2, C*;

1030 RESETCZ. 1) : )

1033 PX-PX+1
1035 GOTO120
1040 RETURN
1100 FOR X-l TO 50
1110' PRINT* 70, "

2000 if px-fl gosub 38ee
2010 CLS : PRINT "

2617 PX(XI) - PX+PX<XI> : PH<XI>
2829 PRINT, "SHOTS HITS
2030 PRINT : PRINT "THIS ROUND
2035 IFPX<1)*9THEHPX(1>=1
2040 PRINT : PRINT "TOTAL
2042 PRINT TflB<28> PH<XI>) TflB<42> <PH<XI) / PX(XI)>
2045 FOR X-l TO 2500 : NEXT
2050 XI=XI+1
20S9 IF XI>X1 THEN XI=-1

2B65 PX*0
2070 GOTO10
2115 IF PX«e GOSUB 3008
3000 PSIMTB 0. "WHAT LUCK \\\" : PX="i : RETURN

PRINT : PRINT* * "i Nf<XI> i

PH<XI)+i
PERCENTAGE"

TflB<17> PX; TflB(20>"l";~Tfle<42> <1/PX> * 100

TRB<17> PX<XI>;

=21

H/7



Things You Should Know —
LEVEL II TRS-80

1. After executing an lNPUT*-tf (input from cassette), some

TRS-80'swill not READ properly from DATA statements.

Instead a RESTORE will automatically be performed before

each READ, so that only first DATA item will be read.

If your TRS-80 operates this way (depends on a few IC's from

one supplier), there is a simple fix. Insert the statement,

POKE 16553,255

immediately after every INPUT#-a statement

2. A PRlNT#-ii statement can put no more than 248 bytes on

the tape. If you have a lengthy PRINT* list, only the first

248 bytes will be saved on tape; the rest will be lost Therefore

you should break up such lists into two or more PRINT*
statements.

3. If you have an Expansion Interface connected and you need

to Reset the Computer, hold down the BREAK key and press

Reset This will return you to the MEMORY SIZE question.

Any BASIC program in memory will be lost by this Reset

sequence,

4. If you stop a BASIC program during execution, and then alter

the program itself, all variables will be reset to zero. You will

not be able to continue execution where you left off. RUN it

again. Note: If a syntax error is encountered and BASIC puts

you in the Edit mode, type Qto return to the Command mode.

You can then examine variable values, ifyou wish, before fixing

the syntax error.

5. If you attempt to execute an LPR1NT or an LLIST when a line

printer is not connected (or is turned off), the computer will

"freeze up". Either turn on the line printer, or, if one is not

connected. Reset the Computer (see 3 above).

6V AH the built-in mathematical functions in LEVEL I! BASIC
return single-precision results (6-7 digits of accuracy). Trig

functions use or return radians, not degrees. A radian-degree

conversion is given in the LEVEL II Reference Manual.



7. Mjrd-to-finJ progrjni errors:

Shift characters arc nut always merchantable with their

unshiflcd counterparts. For example, PRINT® will not

work if you u« a shifted (i. even though it Will look ok

on the screen. If you can't find anything wrong with a

line which causes a syntax error message, try retyping the

line, watching out for the shift key.

Spaces arc sometimes important in LEVEL II BASIC. The

following line is incorrect:

IFD< OD-O

because OD is interpreted to mean "double-precision

zero".

Change it to:

1FD<0THEND=»0

8. To use the CLOAD? with cassette »2, use this format:

CLOAD#-2,?"filename"

9. If you frequently get "double-entries" when pressing a particular

key, remove the plastic key cap, and carefully clean the contacts,

using i stiff piece of paper. Insert the paper between the

contacts, press the key down to pinch the paper, and pull the

paper out while the contacts are pinching it.

10. If you have other questions regarding operation of your

TRS-80, call Customer Service, (817) 390-3583, or write:

TRS-80 Customer Service

Radio Shack

P.O.Box 185

Fort Worth, TX 76102

11. The maximum TAB for an LPR1NT statement in 63. The Line

Printer won't tab past column 63. There's a simple way around

this limitation, using the STRINGS function to simulate tabs

past column 63.

Example:

LPRINT TAB(5)'-NAME"TAB(30)"AODRESS-'STRING$(63.32]"BALANCE"

will print "NAME" at column 5, "ADDRESS" at column 30,

and "BALANCE" at column 100.


